Tilbage


Delmål 9: Industri, innovation og infrastruktur

Forskere


FN 9.5.2 Antal personer med Ph.D og forskeruddannelse
# Import
UDXISCPROD_raw <-
  statgl_url("UDXISCPROD", lang = language) %>% 
  statgl_fetch(
    ISCED11_level = 80,
    Sex           = px_all(),
    Aar           = px_all(),
    .col_code     = TRUE
    ) %>% 
  as_tibble()
 
# Transform
UDXISCPROD <- 
  UDXISCPROD_raw %>% 
  mutate(
    Aar = Aar %>% make_date(),
    Sex = Sex %>% fct_inorder()
    )

# Plot
UDXISCPROD %>% 
  ggplot(aes(
    x    = Aar,
    y    = value,
    fill = Sex
  )) +
  geom_col() +
  #facet_wrap(~ gender) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  labs(
    title   = sdg9$figs$fig1$title[language],
    x       = " ",
    y       = sdg9$figs$fig1$y_lab[language],
    fill    = " ",
    caption = sdg9$figs$fig1$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXISCPROD <- 
  UDXISCPROD_raw %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  #arrange(desc(time)) %>% 
  mutate(Aar = Aar %>% factor(levels = unique(Aar))) %>% 
  spread(3, 4)

# Table
UDXISCPROD %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = UDXISCPROD[[1]] %>% table())
2020 2021 2022 2023 2024
Phd. og forskeruddannelse
Kvinder 27 32 35 39 37
Mænd 27 30 27 26 23

Erhvervsstruktur


GS Fordeling af virksomheder efter lønsumsintervaller
# Import
ESD6A_raw <-
  statgl_url("ESX6A", lang = language) %>% 
  statgl_fetch(
    aar         = px_all(),
    ai2         = px_all(),
    section     = "total",
    .col_code   = TRUE
  ) %>% 
    as_tibble() |> 
  filter(ai2 != "Total")

# transform
ESD6A <- 
  ESD6A_raw %>%
  mutate(
    ai2 = ai2 %>% str_remove_all("[A-K]|\\.") %>% trimws() %>% fct_inorder() %>% fct_rev(),
    aar = aar %>% make_date()
  )


# legend ...
fill_lab <- colnames(statgl_url("ESX6A", lang = language) %>% statgl_fetch() %>% as_tibble())[1] %>% str_to_sentence()

# Plot
ESD6A %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = ai2
  )) +
  geom_area() +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg9$figs$fig2$title[language],
    subtitle = sdg9$figs$fig2$sub[language],
    x        = " ",
    y        = ESD6A[["unit"]][1],
    fill     = fill_lab,
    caption  = sdg9$figs$fig2$cap[language]
  )

Statistikbanken

Metode


# col lab
col_lab        <- 1
names(col_lab) <- fill_lab


# transform
ESD6A <- 
  ESD6A_raw %>%
  mutate(
    ai2 = ai2 %>% 
      str_remove_all("[A-K]|\\.") %>% 
      trimws() %>% 
      fct_inorder() %>% 
      fct_rev(),
    ) %>% 
  filter(aar >= Sys.time() %>% year() - 5) %>% 
  mutate(aar = aar %>% fct_inorder() %>% fct_rev()) %>% 
  spread(aar, value) %>% 
  arrange(desc(ai2)) %>% 
  rename(col_lab)

# table
ESD6A %>%  
  statgl_table() %>% 
  add_footnote(ESD6A[["unit"]][1], notation = "symbol")
Lønsumsinterval section 2022 2021 2020
00-10 Total 359 354 310
10-50 Total 585 680 510
50-100 Total 473 557 461
100-250 Total 785 818 751
250-500 Total 590 613 641
500-1000 Total 407 372 368
1000-5000 Total 517 477 479
5000-10000 Total 88 81 84
Over 10000 Total 110 111 100



# Import
ESX5A_raw <-
  statgl_url("ESX5A", lang = language) %>% 
  statgl_fetch(
    nykom      = 1:5,
    ai2        = px_all(),
    aar        = px_all(),
    .col_code  = TRUE
    ) %>% 
  as_tibble() |> 
  filter(ai2 != "Total")

ESX5A <- 
  ESX5A_raw %>% 
  rename(lonsum = ai2) %>% 
  mutate(
    aar    = aar %>% make_date(),
    lonsum = lonsum %>% str_remove_all("[A-K]|\\.") %>% trimws() %>% fct_inorder() %>% fct_rev()
  )


# Plot
ESX5A %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = lonsum
  )) +
  geom_area() +
  facet_wrap(~ nykom, scales = "free") +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg9$figs$fig3$title[language],
    subtitle = sdg9$figs$fig3$sub[language],
    x        = " ",
    y        = ESX5A[[3]][1],
    fill     = fill_lab,
    caption  = sdg9$figs$fig3$cap[language]
  )

Statistikbanken

Metode


ESX5A <- 
  ESX5A_raw %>% 
  rename(lonsum = ai2) %>% 
  filter(aar >= Sys.time() %>% year() - 5) %>% 
  mutate(
    aar    = aar %>% fct_inorder() %>% fct_rev(),
    nykom  = nykom %>% fct_inorder(),
    lonsum = lonsum %>% str_remove_all("[A-K]|\\.") %>% trimws() %>% fct_inorder() %>% fct_rev()
    ) %>% 
  spread(aar, value) %>% 
  arrange(nykom, desc(lonsum))

ESX5A %>% 
  select(nykom) %>% 
  rename(col_lab) %>% 
  statgl_table() %>% 
  pack_rows(index = ESX5A[["nykom"]] %>% table())
Lønsumsinterval
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia

Eksport af andet end fisk


GS Fiskeriets andel af samlet eksport
# Import
IEXSITC_raw <-
  statgl_url("IEXSITC", lang = language) %>% 
  statgl_fetch(quarter     = 0,
               processing  = c("G11", "3"),
               transaction = 2,
               time        = px_all(),
               .col_code   = TRUE
               ) %>% 
    as_tibble()

# Transform
step <-
  IEXSITC_raw %>% 
  mutate(processing = processing %>% str_remove_all("[:digit:]|\\-") %>% trimws(which = "left")) %>% 
  arrange(time, processing)

IEXSITC <- 
  step %>% 
  mutate(export = fct_reorder(processing, -value, sum, na.rm = TRUE),
         time = make_date(time),
         value = value / 10^9) 
# Plot
IEXSITC %>% 
  ggplot(aes(
    x = time,
    y = value, 
    fill = export
  )) +
  geom_area(position = "identity") +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title = sdg9$figs$fig4$title[language],
    y     = sdg9$figs$fig4$y_lab[language],
    x     = " ",
    fill  = " ",
    caption = sdg9$figs$fig4$cap[language]
  )

Statistikbanken

Metode


# Transform
IEXSITC <- 
  step %>% 
  mutate(
    export = fct_reorder(processing, -value, sum, na.rm = TRUE),
    value = value / 10^9
    ) 

tab <- 
  IEXSITC %>% 
  select(-2, -3) %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(time, value)

# Table
tab %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[[1]] %>% table()) %>% 
  row_spec(1, bold = TRUE) %>% 
  add_footnote(sdg9$figs$fig4$foot[language], notation = "symbol")
2020 2021 2022 2023 2024 2025
Hele året
I alt 5,30 5,06 5,88 6,21 5,21 NA
Fisk, krebsdyr, bløddyr og varer deraf 4,85 4,78 5,64 5,86 5,08 NA
* Millarder kroner
# Import
IEXSITC_raw <-
  statgl_url("IEXSITC", lang = language) %>%
  statgl_fetch(processing  = px_all(),
               transaction = 2,
               time        = px_all(),
               .col_code   = TRUE
               ) %>% 
    as_tibble()

# Transform
IEXSITC <- 
  IEXSITC_raw %>% 
  filter(processing %in% unique(IEXSITC_raw[[1]])[c(16, 26, 45, 55, 65, 74)]) %>% 
  mutate(
    time       = time %>% make_date(),
    value      = value / 10^6,
    processing = processing %>% str_remove_all("[:digit:]|\\-") %>% trimws()
    )

# Plot
IEXSITC %>% 
  ggplot(aes(
    x = time, 
    y = value,
    fill = processing
    )) +
  geom_area() + 
  facet_wrap(~ processing, labeller = label_wrap_gen(30)) +
  scale_fill_statgl() +
  theme_statgl() +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  theme(legend.position = "none") +
  labs(
    title = sdg9$figs$fig5$title[language],
    x = " ", 
    y = sdg9$figs$fig5$y_lab[language],
    fill = " ",
    caption = sdg9$figs$fig4$cap[language]
 )

Statistikbanken

Metode


# Transform
IEXSITC <- 
  IEXSITC_raw %>% 
  filter(processing %in% unique(IEXSITC_raw[[1]])[c(16, 26, 45, 55, 65, 74)],
         time >= year(Sys.time()) -7,
         value != "NA") %>% 
  #arrange(desc(time)) %>% 
  mutate(
    value      = round(value / 10^6, 3),
    processing = processing %>% str_remove_all("[:digit:]|\\-") %>% trimws(),
    time       = time %>% factor(levels = unique(time))
    ) %>% 
  spread(3,4)

# Table
IEXSITC %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = IEXSITC[[2]] %>% str_to_title() %>% table()) %>% 
  add_footnote(sdg9$figs$fig5$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023 2024
Eksport
Bearb. Varer, hovedsagelig halvfabrikata i alt 13,285 5,699 13,193 8,149 16,420 20,536 11,039
Bearbejdede varer i.a.n. i alt 11,818 11,720 5,117 4,683 16,185 26,685 24,564
Diverse varer og transaktioner i.a.n. i alt 124,994 108,924 91,546 74,050 9,617 19,494 4,548
Maskiner og transportmidler i alt 530,455 315,276 326,187 182,999 179,201 260,847 76,197
Mineral, brændsels og smørestoffer o.l. i alt 0,002 0,004 0,079 0,002 0,004 0,017 0,141
Råstoffer, ikke spiselige (undt. Brændsel) i alt 4,605 7,882 6,824 7,135 11,907 11,294 13,291
* Millioner kroner

Industriens bruttoværditilvækst


FN 9.2.1 Industriens bruttoværditilvækst
# Import
BVT <-
  statgl_url("NRX0418", lang = language) %>% 
  statgl_fetch(units    = "L",
               industry = px_all(),
               time     = px_all(),
               .col_code  = TRUE
               ) %>% 
    as_tibble() %>% 
  mutate(value = value/1000)


BVT <- BVT %>%  filter(industry %in% unique(BVT %>% pull(2))[9])


BNP <-
  statgl_url("NRX10", lang = language) %>% 
  statgl_fetch(
    units   = "L",
    account = "02",
    time    = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
industry <- 
  BVT %>% 
  rename("BVT" = 4) %>% 
  left_join(BNP %>% rename("BNP" = 4)) %>% 
  mutate(value = BVT / BNP,
         time = time %>% as.numeric())

# Plot
industry %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = units
  )) +
  geom_line(size = 2) +
  scale_y_continuous(labels = scales:: percent) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg9$figs$fig6$title[language],
    subtitle = industry[[1]][1],
    x        = " ",
    y        = sdg9$figs$fig6$y_lab[language],
    caption  = sdg9$figs$fig6$cap[language]
  )

Statistikbanken, bruttoværditilvækst

Statistikbanken, BNP per indbygger


tab <- 
  industry %>% 
  select(industry, time, value) %>% 
  mutate(
    industry = industry %>% str_remove_all("C "),
    value    = value * 100
    ) %>% 
  #arrange(desc(time)) %>% 
  filter(time >= max(time) - 5) %>% 
  mutate(time = time %>% as.character() %>%  fct_inorder()) %>% 
  mutate(value = value %>% round(2)) %>% 
  mutate(value = paste0(value, "%")) %>% 
  spread(time, value)

tab %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(sdg9$figs$fig6$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Industri 0.29% 0.19% 0.16% 0.11% 0.23% 0.15%
* Procentvis andel af BNP per indbygger

Industriens beskæftigelse


FN 9.2.2 Industriens beskæftigelse
# Import
NRX0518_raw <-
  statgl_url("NRX0518", lang = language) %>% 
  statgl_fetch(
    units    = "BES",
    industry = c("C", "TOT"),
    time     = px_all(),
    .col_code  = TRUE
    ) %>% 
    as_tibble()


NRX0518 <- 
  NRX0518_raw %>% 
  spread(industry, value) %>% 
  rename("indu" = 3, "total" = 4) %>% 
  mutate(
    value = indu / total,
    time = time %>% as.numeric()
    )



NRX0518 %>% 
  ggplot(aes(
    x = time,
    y = value,
    color = units
  )) +
  geom_line(size = 2) +
  expand_limits(y = 0) +
  scale_y_continuous(labels  = scales::percent_format(scale = 100, accuracy = 1, big.mark = ".",
  decimal.mark = ",")) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title = sdg9$figs$fig7$title[language],
    x = " ",
    y = sdg9$figs$fig7$y_lab[language],
    caption = sdg9$figs$fig7$cap[language]
  )

Statistikbanken


NRX0518 %>% 
  select(time, value) %>% 
  #arrange(desc(time)) %>% 
  filter(time >= max(time) - 5) %>% 
  mutate(time = time %>% as.character() %>%  fct_inorder()) %>% 
  mutate(
    value = value * 100,
    value = value %>% round(1)
    ) %>% 
  spread(time, value) %>% 
  statgl_table() %>% 
  add_footnote(sdg9$figs$fig7$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
5,8 5,4 5,6 5,4 5,4 5,4
* Procentvis andel af samlede beskæftigelse