GS  Klimakorrigeret andel af affaldsvarme og vandkraft efter
sektor
# Import
ENE1ACT_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/ef08d007-6c33-4385-812c-dc082de93f1e.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))
ENE1ACT <-
  ENE1ACT_raw %>% 
  rename(
    "type"       = 1,
    "use"        = 2,
    "time"       = 3,
    "total"      = 4,
    "waste heat" = 5,
    "hydropower" = 6
  ) %>% 
  mutate(across(4:ncol(.), as.numeric)) %>% 
  mutate_all(~replace(., is.na(.), 0)) %>% 
  mutate(other = total - (`waste heat` + hydropower)) %>% 
  gather(energy, value, 5:ncol(.)) %>% 
  select(-4) %>% 
  mutate(energy = energy %>% fct_inorder())
step <-
  ENE1ACT %>% 
  mutate(
    energy = energy %>% str_replace("waste heat", sdg13$figs$fig3$cols$col1[language] %>% unlist()),
    energy = energy %>% str_replace("hydropower", sdg13$figs$fig3$cols$col2[language] %>% unlist()),
    energy = energy %>% str_replace("other",      sdg13$figs$fig3$cols$col3[language] %>% unlist()),
    energy = energy %>% factor(levels = unique(energy)),
    use    = use    %>% factor(levels = unique(use))
  )
  # Plot
step %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = energy
  )) +
  geom_area(position = "fill") +
  facet_wrap(~ use) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg13$figs$fig3$title[language],
    subtitle = ENE1ACT[[1]][1],
    x        = " ",
    y        = " ",
    fill     = sdg13$figs$fig3$fill[language],
    caption  = sdg13$figs$fig3$cap[language]
  )

Statistikbanken   Metode