Tilbage


Delmål 5: Ligestilling mellem kønnene

Gennemsnitsindkomst


GS Gennemsnitsindkomst efter køn, bosted og uddannelse
INXPI104_raw <- 
  "INXPI104" %>% 
  statgl_url(lang = language) %>% 
  statgl_fetch(
    "level of education" = px_all(),
    unit                 = 3,
    gender               = 1:2,
    age                  = c(0, 4),
    "type of income"     = 1,
    time                 = px_all(),
    .col_code            = TRUE
    ) %>% 
  as_tibble()


INXPI104 <- 
  INXPI104_raw %>%
  filter(
    value != "NA",
    age   == unique(INXPI104_raw %>% pull(age))[1]
    ) %>% 
  rename(
    "edu"  = `level of education`,
    "type" = `type of income`
    ) %>% 
  mutate(
    edu  = edu %>% fct_inorder(),
    type = type %>%  str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()
    )

INXPI104 %>% 
  ggplot(aes(
    x     = time %>% as.numeric(),
    y     = value,
    color = gender %>% fct_rev()
  )) +
  geom_line(size = 2) +
  facet_wrap(~ edu) +
  theme_statgl() +
  scale_color_statgl() +
  scale_y_continuous(labels = function(x) format(x, big.mark = ".", scientific = FALSE)) +
  scale_x_continuous(breaks = scales:: pretty_breaks()) + 
  labs(
    title    = INXPI104 %>% pull(type) %>% unique(),
    subtitle = INXPI104 %>% pull(unit) %>% unique(),
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg5$figs$fig1$cap[language]
  )

Statistikbanken

Metode


tab <- 
  INXPI104 %>% 
  filter(time >= Sys.time() %>% year() - 7) %>% 
  mutate(time = time %>% fct_rev()) %>% 
  spread(time, value) %>% 
  select(-age)
  

tab %>% 
  select(-c(edu, unit, type)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["type"]] %>%  table()) %>% 
  pack_rows(index = tab[["edu"]] %>% table()) %>% 
  add_footnote(tab %>% pull(unit) %>% unique(), notation = "symbol")
2024 2023 2022 2021 2020 2019 2018
Indkomst i alt før skat mv
Grundskole
Kvinder 186.549 178.302 172.812 165.146 162.849 159.516 155.746
Mænd 246.130 242.372 234.324 216.600 221.765 220.133 219.879
Gymnasial uddannelse
Kvinder 228.977 215.094 213.660 202.973 200.076 195.379 188.188
Mænd 349.248 338.409 327.912 321.539 306.222 307.544 306.674
Erhvervsuddannelse
Kvinder 321.476 309.519 304.231 290.398 284.749 282.021 275.123
Mænd 432.780 419.922 409.975 391.283 399.353 385.654 378.860
Kort videregående uddannelse
Kvinder 272.260 242.656 228.568 203.095 198.828 212.133 186.694
Mænd 353.615 327.698 310.500 306.983 275.872 268.076 263.876
Mellemlang videregående uddannelse
Kvinder 462.415 444.865 439.964 427.006 416.231 410.856 405.089
Mænd 596.076 571.541 550.200 539.642 528.675 535.483 532.088
Videregående uddannelse
Kvinder 671.863 614.281 609.123 601.243 589.539 575.814 560.462
Mænd 827.517 789.057 760.808 766.408 759.769 767.176 713.205
* Gennemsnit for personer med indkomsttypen (kr)
INXPI104 <- 
  INXPI104_raw %>%
  filter(
    value != "NA",
    age   == unique(INXPI104_raw %>% pull(age))[2]
  ) %>% 
  rename(
    "edu"  = `level of education`,
    "type" = `type of income`
  ) %>% 
  mutate(
    edu  = edu %>% fct_inorder(),
    type = type %>%  str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()
  )

INXPI104 %>% 
  ggplot(aes(
    x     = time %>% as.numeric(),
    y     = value,
    color = gender %>% fct_rev()
  )) +
  geom_line(size = 2) +
  facet_wrap(~ edu) +
  theme_statgl() +
  scale_color_statgl() +
  scale_y_continuous(labels = function(x) format(x, big.mark = ".", scientific = FALSE)) +
  scale_x_continuous(breaks = scales:: pretty_breaks()) + 
  labs(
    title    = paste0(
      INXPI104 %>% pull(type) %>% unique(), ", ", 
      INXPI104 %>% pull(age) %>% unique()
    ),
    subtitle = INXPI104 %>% pull(unit) %>% unique(),
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg5$figs$fig1$cap[language]
  )

Statistikbanken

Metode


tab <- 
  INXPI104 %>% 
  filter(time >= Sys.time() %>% year() - 7) %>% 
  mutate(time = time %>% fct_rev()) %>% 
  spread(time, value) %>% 
  unite(type, type, age, sep = ", ")


tab %>% 
  select(-c(edu, unit, type)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["type"]] %>%  table()) %>% 
  pack_rows(index = tab[["edu"]] %>% table()) %>% 
  add_footnote(tab %>% pull(unit) %>% unique(), notation = "symbol")
2024 2023 2022 2021 2020 2019 2018
Indkomst i alt før skat mv, 30-34 år
Grundskole
Kvinder 191.654 186.574 176.554 171.386 165.637 161.100 158.492
Mænd 252.434 262.244 252.055 230.804 226.090 229.122 220.892
Gymnasial uddannelse
Kvinder 238.633 209.734 202.595 207.268 191.671 188.423 186.541
Mænd 320.323 314.355 293.683 296.680 289.586 313.604 273.332
Erhvervsuddannelse
Kvinder 285.259 278.977 275.243 265.726 260.237 266.759 256.674
Mænd 432.038 417.811 406.392 380.457 357.371 347.546 331.144
Kort videregående uddannelse
Kvinder 278.932 246.090 251.569 208.128 222.469 208.038 226.267
Mænd 388.152 359.467 350.995 349.079 306.309 294.879 347.271
Mellemlang videregående uddannelse
Kvinder 403.970 386.579 383.420 377.972 359.267 359.695 360.720
Mænd 497.088 485.544 496.798 498.912 473.930 446.026 436.701
Videregående uddannelse
Kvinder 537.490 496.914 482.401 471.482 472.983 460.440 441.388
Mænd 556.644 556.060 519.394 503.610 522.714 483.043 472.560
* Gennemsnit for personer med indkomsttypen (kr)

Fordelingen af folkevalgte efter køn


FN 5.5.1 Andel af kvindelige parlamentarikere i det nationale parlament
# Import
ELEC03_raw <- 
  "https://pxweb.nordicstatistics.org:443/sq/6c4d7add-c65a-43ab-a60a-0119c13f9bd6.csv" |> 
  read.csv() |> 
  as_tibble()

vec <- 1:21
names(vec) <- c("country", 2003:2022)

# Transform
ELEC03 <- 
  ELEC03_raw |> 
  rename(vec) |> 
  mutate(across(everything(), as.numeric),
         country = "greenland") |> 
  pivot_longer(cols = c("2003", "2004", "2005", "2006", "2007", "2008", "2009", 
                        "2010", "2011", "2012", "2013", "2014", "2015", "2016",
                        "2017", "2018", "2019", "2020", "2021", "2022"),
               names_to = "time",
               values_to = "value") |> 
  drop_na(value)

# Plot
ELEC03 |> 
  ggplot(aes(
    x = time,
    y = value,
    fill = country
  )) +
  geom_col() +
  theme_statgl() +
  scale_fill_statgl() +
  theme(legend.position = "none") +
  labs(
    title   = sdg5$figs$fig2$title[language],
    x       = " ",
    y       = sdg5$figs$fig2$y_lab[language],
    fill    = " ",
    caption = sdg5$figs$fig2$cap[language]
  )

Nordic Statistics

Metode


col0 <- sdg5$figs$fig2$col0[language]

# Tabel
ELEC03 |> 
  spread(time, value) |> 
  mutate(country = col0) |> 
  rename(" " = 1) |> 
  statgl_table() |> 
  add_footnote(sdg5$figs$fig2$foot[language], notation = "symbol")
X2023 X2024 2005 2009 2013 2014 2015 2016 2017 2018 2020 2021
Antal kvinder NA NA 42 29 41 43 33 33 31 42 47 32
* Antal ved årets udgang

Økonomisk udsatte


GS Andel af økonomisk udsatte i befolkningen efter køn
# Import 
SOXOU01_raw <-
  statgl_url("SOXOU01", lang = language) %>%
  statgl_fetch(
    "inventory variable" = c("Andel50", "Andel60"),
    gender               = 1:2,
    year                 = px_all(),
    .col_code            = TRUE
    ) %>% 
    as_tibble()

# Transform
SOXOU01 <-
  SOXOU01_raw %>% 
  mutate(
    year   = year %>%  make_date(),
    gender = gender %>% fct_inorder()
    )

# Plot
SOXOU01 %>% 
  mutate(`inventory variable` = `inventory variable` %>% str_to_sentence()) %>% 
  ggplot(aes(
    x    = year,
    y    = value,
    fill = gender)) +
  geom_col(position = "dodge") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ",")
    ) +
  facet_wrap(~ `inventory variable`) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg5$figs$fig3$title[language],
    subtitle = sdg5$figs$fig3$sub[language],
    x        = " ", 
    y        = " ", 
    fill     = " ",
    caption  = sdg5$figs$fig3$cap[language]
  )

Statistikbanken

Metode


# Transform
SOXOU01 <-
  SOXOU01_raw %>% 
  arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 5) %>% 
  mutate(year = year %>% fct_inorder()) %>% 
  unite(combi, 1, 2, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(1, 3)

vec      <- SOXOU01[-1] %>% colnames() %>% str_split(",") %>% unlist() %>% str_to_sentence()
head_vec <- vec[c(T, F)] %>% table()
col_vec  <- vec[c(F, T)]

# Table
SOXOU01 %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  add_footnote(
    sdg5$figs$fig3$foot[language],
    notation = "symbol"
    )
Andel under 50%
Andel under 60%
andel under 50%,Kvinder andel under 50%,Mænd andel under 60%,Kvinder andel under 60%,Mænd
2023 4,1 5,0 7,8 8,7
2022 4,1 4,8 7,7 8,6
2021 3,8 4,3 7,4 7,9
2020 3,7 4,5 7,3 8,1
* Procentvis andel under 50 eller 60% af medianindkomsten.

Trintest-resultater


GS Trintest resultater efter køn
# Import
UDXTKK_raw <-
  statgl_url("UDXTKK", lang = language) %>%
  statgl_fetch(subject   = px_all(),
               grade     = px_all(),
               sex       = 1:2,
               unit      = "B",
               time      = px_all(),
               .col_code = TRUE
               ) %>% 
    as_tibble()

# Transform
UDXTKK <- 
  UDXTKK_raw %>% 
  mutate(
    time     = time %>% make_date(),
     subject =  subject %>% fct_inorder()
    )

fig_legend   <- statgl_url("UDXTKK", lang = language) %>% statgl_fetch() %>% select(1) %>% colnames()
fig_title    <- (statgl_url("UDXTKK", lang = language) %>% statgl_meta())$title
fig_subtitle <- UDXTKK_raw[["unit"]] %>% unique()
  
# Plot
UDXTKK %>% 
  ggplot(aes(
    x = time,
    y = value,
    color = subject
  )) +
  geom_line(size = 2) +
  facet_grid(grade ~ sex) +
  theme_statgl() + 
  scale_color_statgl() +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  labs(
    title    = fig_title,
    subtitle = fig_subtitle,
    x        = " ",
    y        = " ",
    color    = fig_legend,
    caption  = sdg5$figs$fig4$cap[language]
  )

Statistikbanken

Metode


UDXTKK <- 
  UDXTKK_raw %>% 
  mutate(
    subject = subject %>% fct_inorder(),
    grade   = grade %>% fct_inorder(),
    sex     = sex %>% fct_inorder()
    ) %>% 
  arrange(subject, time) %>% 
  unite(combi, 2, 1, 3, sep = ",") %>% 
  spread(1, 4) %>% 
  arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5)

vec       <- UDXTKK %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec1 <- rep((vec[c(F, T, F)])[1:8] %>% table(), 2)
head_vec2 <- vec[c(T, F, F)] %>% table()
col_vec   <- vec[c(F, F, T)] 

# Table
UDXTKK %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  mutate_all(~replace(., is.na(.), 0)) %>% 
  statgl_table(col.names = c(" ", col_vec),
               replace_0s = TRUE) %>% 
  add_header_above(c(" ", head_vec1)) %>% 
  add_header_above(c(" ", head_vec2)) %>% 
  pack_rows(index = UDXTKK[["unit"]] %>% table())
  1. klasse
  1. klasse
Dansk
Engelsk
Grønlandsk
Matematik
Dansk
Engelsk
Grønlandsk
Matematik
  1. klasse,Dansk,Drenge
  1. klasse,Dansk,Piger
  1. klasse,Engelsk,Drenge
  1. klasse,Engelsk,Piger
  1. klasse,Grønlandsk,Drenge
  1. klasse,Grønlandsk,Piger
  1. klasse,Matematik,Drenge
  1. klasse,Matematik,Piger
  1. klasse,Dansk,Drenge
  1. klasse,Dansk,Piger
  1. klasse,Engelsk,Drenge
  1. klasse,Engelsk,Piger
  1. klasse,Grønlandsk,Drenge
  1. klasse,Grønlandsk,Piger
  1. klasse,Matematik,Drenge
  1. klasse,Matematik,Piger
Løsningssikkerhed (pct. rigtige)
2024 39 43 0 0 43 48 51 46 41 45 80 88 50 59 41 38
2023 45 48 0 0 48 48 56 48 42 50 82 90 54 64 41 42
2022 39 44 0 0 40 43 48 48 44 59 75 86 57 66 41 41
2021 46 48 0 0 45 50 53 49 47 59 71 76 54 66 41 38
2020 49 50 0 0 40 48 53 48 54 60 73 73 57 65 41 42

Karaktergennemsnit


GS Prøvekarakterer efter køn
# Import
UDXFKK_raw <-
  statgl_url("UDXFKK", lang = language) %>% 
  statgl_fetch(unit             = "andel",
               grade            = "FO",
               subject          = c("01", "02", "03", "04"),
               "type of grades" = 56:58,
               sex              = 1:2,
               time             = px_all(),
               .col_code = TRUE) %>% 
    as_tibble()

# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  separate(`type of grades`, c("split1", "split2"),  " - ") %>% 
  mutate(split2 = split2 %>% str_to_title(),
         split1 = split1 %>% str_to_lower(),
         time = time %>% make_date()) %>% 
  unite(combi, 2, 4, sep = ", ")

fig_title    <- (statgl_url("UDXFKK", lang = language) %>% statgl_meta())$title
fig_y        <- UDXFKK[["unit"]] %>% unique() %>% str_to_title()
fig_subtitle <- UDXFKK[["combi"]] %>% unique()

# Plot
UDXFKK %>% 
  ggplot(aes(
    x     = time,
    y     = value, 
    color = sex
    )) +
  geom_line(size = 1.5) +
  facet_grid(split2 ~ subject) +
  scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ",", 
    accuracy     = 1
    )) +
  theme_statgl() + 
  scale_color_statgl(guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = fig_title,
    subtitle = fig_subtitle,
    x        = " ",
    y        = fig_y,
    color    = " ",
    caption  = sdg5$figs$fig5$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  filter(time >= year(Sys.Date()) - 6,
         value != "NA") %>% 
  separate(`type of grades`, c("split1", "split2"),  " - ") %>% 
  mutate(split2 = split2 %>% str_to_title(),
         split1 = split1 %>% str_to_lower()) %>% 
  unite(combi1, 2, 4, sep = ", ") %>% 
  unite(combi2, 3, 4, sep = ",") %>% 
  spread(3, ncol(.)) %>% 
  arrange(desc(time))

vec      <- UDXFKK %>% select(-(1:4)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(T, F)] %>% table()
col_vec  <- vec[c(F, T)]

# Table
UDXFKK %>% 
  select(-(1:2), -4) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = UDXFKK[[1]] %>% str_to_title() %>% table()) %>% 
  pack_rows(index = UDXFKK[["time"]] %>% table() %>% rev()) %>% 
  add_footnote(UDXFKK[[2]] %>% unique(),
               notation = "symbol")
Dansk
Engelsk
Grønlandsk
Matematik
Dansk,Færdighedsprøve Dansk,Mundtlig Dansk,Skriftlig Engelsk,Færdighedsprøve Engelsk,Mundtlig Engelsk,Skriftlig Grønlandsk,Færdighedsprøve Grønlandsk,Mundtlig Grønlandsk,Skriftlig Matematik,Færdighedsprøve Matematik,Mundtlig Matematik,Skriftlig
Karaktergennemsnit
2024
Drenge 3,36 4,30 2,79 5,54 7,90 5,10 4,15 6,11 4,45 5,11 5,47 2,55
Piger 4,05 5,00 3,58 5,73 7,16 5,58 5,57 7,47 6,14 4,51 5,74 2,41
2023
Drenge 3,92 6,16 3,39 5,60 6,60 4,39 3,50 6,30 3,84 5,14 5,81 2,89
Piger 4,18 6,13 4,28 5,52 7,34 4,73 4,49 6,74 5,65 4,49 5,37 3,07
2022
Drenge 3,43 3,86 2,78 4,76 6,27 3,82 3,37 5,87 4,60 4,95 5,26 2,41
Piger 4,71 5,55 4,22 5,55 6,74 5,07 3,98 7,49 6,18 4,84 5,22 2,61
2021
Drenge 3,93 4,89 2,59 4,73 6,66 3,75 3,11 5,67 4,18 5,06 4,79 2,16
Piger 4,93 5,74 4,00 5,03 6,36 4,40 3,94 6,21 6,31 4,84 4,94 2,17
2019
Drenge 4,31 3,63 3,30 4,52 4,72 3,28 4,21 5,32 3,72 5,33 4,64 2,18
Piger 5,74 5,75 4,83 5,58 5,81 4,69 5,24 7,65 5,90 5,06 4,60 2,69
* Folkeskolens afgangselever, prøvekarakter


På grund af Covid-19 har der ikke været afholdt afgangseksamen i 2020.

Højest fuldførte uddannelse


GS Højst fuldførte uddannelse blandt 35-39 årige efter køn
# Import
UDXISCPROD_raw <-
  statgl_url("UDXISCPROD", lang = language) %>% 
  statgl_fetch(
    ISCED11_level = px_all(),
    Sex           = px_all(),
    Aar           = px_all(),
    alder_grp     = "35-39",
    .col_code     = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISCPROD <-
  UDXISCPROD_raw %>% 
  filter(ISCED11_level != UDXISCPROD_raw[[2]][1]) %>% 
  mutate(
    ISCED11_level = ISCED11_level %>% factor(level = unique(ISCED11_level) %>% rev()),
    Aar           = Aar %>% make_date()
    )

# Plot
UDXISCPROD %>% 
  arrange(ISCED11_level) %>% 
  ggplot(aes(
    x    = Aar,
    y    = value,
    fill = ISCED11_level
  )) +
  geom_area(position = "fill") +
  facet_wrap(~ Sex) +
  scale_y_continuous(labels = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl(base_size = 11) +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE, nrow = 3)) +
  labs(
    title    = sdg5$figs$fig6$title[language],
    subtitle = unique(UDXISCPROD[["age"]]),
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg5$figs$fig6$cap[language]
  )

Statistikbanken

Metode


UDXISCPROD <- 
  UDXISCPROD_raw %>% 
  filter(
    ISCED11_level != UDXISCPROD_raw[[2]][1],
    Aar > year(Sys.Date()) - 7
    ) %>% 
  mutate(
    ISCED11_level = ISCED11_level %>% factor(levels = unique(ISCED11_level))
    ) %>% 
  arrange(ISCED11_level, desc(Aar)) %>% 
  unite(combi, 3, 4, sep = "-") %>% 
  mutate(combi = combi %>% factor(level = unique(combi))) %>% 
  spread(3, 4, sep = "-")

vec      <- (UDXISCPROD %>% select(-(1:2)) %>% colnames() %>% str_split("-") %>% unlist())[c(F, T, T)]
head_vec <- vec[c(F, T)] %>% table() %>% rev()
col_vec  <- vec[c(T, F)]

UDXISCPROD %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE, col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = UDXISCPROD[["alder_grp"]] %>% table())
2024
2023
2022
2021
2020
2019
combi-Kvinder-2024 combi-Mænd-2024 combi-Kvinder-2023 combi-Mænd-2023 combi-Kvinder-2022 combi-Mænd-2022 combi-Kvinder-2021 combi-Mænd-2021 combi-Kvinder-2020 combi-Mænd-2020 combi-Kvinder-2019 combi-Mænd-2019
35-39 år
Grundskole 10. klasses niveau 783 1.228 705 1.199 655 1.125 627 1.068 631 1.037 613 986
Gymnasial uddannelse 117 99 112 84 104 79 105 70 91 63 82 73
Erhvervsuddannelse 619 686 611 678 583 658 584 697 601 688 589 686
Suppleringskurser 41 48 37 43 37 32 32 26 30 23 24 20
Kort videregående uddannelse 106 98 96 81 84 75 88 70 87 76 77 67
Bacheloruddannelse 43 17 41 15 41 17 35 13 35 13 32 18
Professionsbacheloruddannelse 347 109 332 111 320 114 320 98 301 94 296 93
Kandidatuddannelse 119 69 109 70 111 68 105 68 86 70 81 76
Phd. og forskeruddannelse 8 3 8 4 6 3 6 3 6 1 2 0

Beskæftigelse


GS Hovedbeskæftigelse blandt fastboende, efter brancher og køn
ARXBFB01_raw <-
  statgl_url("ARXBFB01", lang = language) |> 
  statgl_fetch(
    beskbrch  = c("01","02","03","04","05","06","07","08","09","10","11","12","13","14","15","16"),
    sex       = c("M","K"),
    opg_var   = "G",
    aar       = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ARXBFB01 <-
  ARXBFB01_raw %>% 
  mutate(
    aar     = aar %>% make_date(),
    beskbrch = beskbrch %>% fct_reorder(value) %>% fct_rev()
    ) %>% 
  arrange(beskbrch)

# Plot
ARXBFB01 %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = sex
    )) +
  geom_area() +
  facet_wrap(~ beskbrch, scales = "free", labeller = label_wrap_gen()) +
  theme_statgl(base_size = 8) + 
  scale_fill_statgl(reverse = TRUE) +
  scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
    )) +
    labs(
      title = unique(ARXBFB01[[4]]),
      subtitle = sdg5$figs$fig7$title[language],
      x        = " ",
      y        = sdg5$figs$fig7$y_lab[language],
      fill     = " ",
      caption  = sdg5$figs$fig7$cap[language]
      )

Statistikbanken

Metode


ARXBFB01 <- 
  ARXBFB01_raw %>% 
  filter(aar >= year(Sys.time()) - 6) %>% 
  mutate(beskbrch = beskbrch %>% fct_reorder(value) %>% fct_rev()) %>% 
  arrange(beskbrch, aar) %>% 
  unite(combi, 2, 3, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(2, ncol(.))

vec      <- ARXBFB01 %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(F, T)] %>% table()
col_vec  <- vec[c(T, F)]

ARXBFB01 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = ARXBFB01[[2]] %>% table())
2019
2020
2021
2022
2023
Mænd,2019 Kvinder,2019 Mænd,2020 Kvinder,2020 Mænd,2021 Kvinder,2021 Mænd,2022 Kvinder,2022 Mænd,2023 Kvinder,2023
Hovedbeskæftigelse i gennemsnit pr. måned
Offentlig forvaltning og service 3.810 8.721 3.889 8.859 3.971 8.931 3.933 8.927 3.819 8.911
Fiskeri og fiskerirelateret industri og handel 4.009 716 3.883 719 3.682 680 3.673 670 3.820 698
Engroshandel og detailhandel 1.488 1.424 1.495 1.417 1.534 1.486 1.553 1.519 1.564 1.490
Transport og godshåndtering 1.525 488 1.521 457 1.508 447 1.558 483 1.594 493
Bygge- og anlægsvirksomhed 1.773 175 1.850 179 2.090 207 2.101 204 2.044 195
Overnatningsfaciliteter og restaurationsvirksomhed 336 382 310 351 351 427 364 469 408 495
Information og kommunikation 431 197 419 196 413 195 379 184 373 182
Administrative tjenesteydelser og hjælpetjenester 297 187 297 165 250 152 244 159 261 188
Energi- og vandforsyning 362 75 360 77 360 77 348 69 353 71
Øvrige serviceerhverv 171 165 153 152 155 151 156 160 159 171
Fast ejendom 159 103 170 106 166 103 179 118 199 127
Liberale, videnskabelige og tekniske tjenesteydelser 151 111 158 109 174 116 176 123 179 119
Fremstillingsvirksomhed 159 49 166 47 173 50 177 52 172 58
Pengeinstitut og finansvirksomhed 63 122 75 127 72 128 64 137 64 143
Råstofindvinding 66 25 65 25 85 34 73 34 56 29
Landbrug, skovbrug og landbrugsrelateret industri og handel 81 19 85 19 92 18 80 18 68 15

Ledighed


GS Ledighedsprocent efter køn
# Import

url <- paste0("https://bank.stat.gl/api/v1/", language, "/Greenland/AR/AR40/ARXLED3.px")

ARXLED3_raw <-
  statgl_url("ARXLED3", lang = language) |> 
  statgl_fetch(
    sex       = c("M", "K"),
    alder_grp = px_all(),
    aar       = px_all(),
    opg_var   = "P",
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ARXLED3 <-
  ARXLED3_raw %>% 
  mutate(
    aar = aar %>% make_date(),
    alder_grp  = alder_grp %>% factor(levels = unique(alder_grp))
    )

# Plot
ARXLED3 %>% 
  ggplot(aes(
    x     = aar, 
    y     = value,
    color = sex
    )) +
  geom_line(size = 1.5) +
  facet_wrap(~ alder_grp, scales = "free") +
  theme_statgl() + scale_color_statgl(reverse = TRUE) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ",")) +
  labs(
    title    = sdg5$figs$fig8$title[language],
    subtitle = sdg5$figs$fig8$sub[language],
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg5$figs$fig8$cap[language]
    )

Statistikbanken

Metode


ARXLED3 <- 
  ARXLED3_raw %>% 
  select(-opg_var) |> 
  mutate(
    alder_grp = alder_grp %>% fct_inorder(),
    aar = aar %>% as.numeric()
    ) %>% 
  filter(aar > max(aar) - 5) %>% 
  arrange(alder_grp, aar) %>% 
  unite(combi, aar, sex, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(combi, value)
  
vec      <- ARXLED3 %>% select(-1) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(T, F)] %>% table()
col_vec  <- vec[c(F, T)]


ARXLED3 %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  row_spec(1, bold = TRUE) %>% 
  pack_rows(index = c("Ledighedsprocent" = ARXLED3[[1]] %>% length())) %>% 
  add_footnote(
    sdg5$figs$fig8$foot[language],
    notation = "symbol")
2019
2020
2021
2022
2023
2019,Mænd 2019,Kvinder 2020,Mænd 2020,Kvinder 2021,Mænd 2021,Kvinder 2022,Mænd 2022,Kvinder 2023,Mænd 2023,Kvinder
Ledighedsprocent
Alle 4,6 4,0 4,9 4,2 3,9 3,4 3,4 3,0 3,1 2,7
18-19 år 7,1 8,2 8,4 8,6 7,1 6,4 4,8 5,3 5,1 5,5
20-24 år 6,4 6,1 6,3 6,0 4,8 4,9 4,1 4,4 3,8 3,5
25-29 år 4,8 4,6 4,7 4,2 3,4 3,0 3,4 2,8 2,9 2,3
30-34 år 3,9 4,1 4,2 4,5 3,2 3,4 3,4 3,1 2,9 2,8
35-39 år 4,4 3,6 4,4 4,1 3,2 3,2 2,7 2,8 2,3 2,5
40-44 år 4,1 3,2 4,4 3,4 3,5 3,2 2,8 2,4 3,0 2,5
45-49 år 4,3 3,7 4,0 3,8 3,1 2,7 2,6 2,1 2,3 2,1
50-54 år 4,5 3,3 5,1 3,7 4,3 3,7 3,8 3,0 2,9 2,5
55-59 år 4,1 3,3 4,9 3,6 4,4 3,2 3,6 2,8 3,9 2,8
60 år-pensionalderen 5,0 3,0 5,3 2,7 4,1 2,9 3,9 3,0 3,8 2,9
* Procent, Ledighed i gennemsnit pr. måned blandt fastboende 18-65-årige.

Middellevetid


GS Middellevetid for 0 og 1-årige efter køn
# Import
BEXDT5A_raw <-
  statgl_url("BEXDT5A", lang = language) %>% 
  statgl_fetch(type   = "E",
               gender = c("M", "K"),
               time   = px_all(),
               age    = 0:1,
               .col_code = TRUE) %>% 
  as_tibble()

# Transform
BEXDT5A <- 
  BEXDT5A_raw %>% 
    separate(time, c("startar", "slutar"),  " - ") %>% 
  mutate(slutar = slutar %>% make_date())

# Plot
BEXDT5A %>% 
  ggplot(aes(
    x     = slutar,
    y     = value,
    color = gender
    )) +
  geom_line(size = 2) +
  facet_wrap(~ age) +
    theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  labs(
    title    = sdg5$figs$fig9$title[language],
    subtitle = sdg5$figs$fig9$sub[language],
    x        = sdg5$figs$fig9$x_lab[language],
    y        = sdg5$figs$fig9$y_lab[language],
    color    = " ",
    caption  = sdg5$figs$fig9$cap[language]
    )

Statistikbanken


# Transform
BEXDT5A <-
  BEXDT5A_raw %>% 
  arrange(desc(time), age) %>% 
  unite(combi, 2, 3, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(2, 4) %>% 
  arrange(desc(time)) %>% 
  mutate(timetime = time) %>% 
  separate(timetime, c("time1", "time2"), " - ") %>% 
  filter(time >= year(Sys.time()) - 10) %>% 
  select(-c("time1", "time2"))

vec      <- BEXDT5A %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(F, T)] %>% table()
col_vec  <- vec[c(T, F)]

# Table
BEXDT5A %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = BEXDT5A[[1]] %>% table()) %>% 
  add_footnote(
    sdg5$figs$fig9$foot[language], 
    notation = "symbol"
    )
0
1
Mænd,0 Kvinder,0 Mænd,1 Kvinder,1
Middellevetid
2015 - 2019 68,3 73 68,1 72,5
* Middellevetid for 0 og 1-årige, personer født i Grønland.


Barselsdagpenge

FN 5.4.1
# Import
SOX007_raw <- 
  statgl_url("SOX007", lang = language) |> 
  statgl_fetch(
    gender    = 1:2,
    type      = 30,
    time      = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
SOX007 <- 
  SOX007_raw |> 
  mutate(value = as.numeric(value)) |> 
  select(-2)


# Plot
SOX007 |> 
  ggplot(aes(
    x     = as.integer(time),
    y     = value,
    color = gender
  )) +
  geom_line(size = 2) +
  theme_statgl() +
  scale_color_statgl() +
  labs(
    title   = sdg5$figs$fig10$title[language],
    x       = " ",
    y       = " ",
    color   = " ",
    caption = sdg5$figs$fig10$cap[language]
  )

Statistikbanken


SOX007 |> 
  filter(time >= year(Sys.time()) - 6) |> 
  spread(time, value) |> 
  rename(" " = 1) |> 
  statgl_table() |> 
  add_footnote(sdg5$figs$fig10$foot[language], notation = "symbol")
2019 2020 2021 2022 2023
Kvinde 897 867 834 718 625
Mand 190 165 148 128 94
* Antal personer