Tilbage


Delmål 5: Ligestilling mellem kønnene

Gennemsnitsindkomst


GS Gennemsnitsindkomst efter køn, bosted og uddannelse
INXPI104_raw <- 
  "INXPI104" %>% 
  statgl_url(lang = language) %>% 
  statgl_fetch(
    "level of education" = px_all(),
    unit                 = 3,
    gender               = 1:2,
    age                  = c(0, 4),
    "type of income"     = 1,
    time                 = px_all(),
    .col_code            = TRUE
    ) %>% 
  as_tibble()


INXPI104 <- 
  INXPI104_raw %>%
  filter(
    value != "NA",
    age   == unique(INXPI104_raw %>% pull(age))[1]
    ) %>% 
  rename(
    "edu"  = `level of education`,
    "type" = `type of income`
    ) %>% 
  mutate(
    edu  = edu %>% fct_inorder(),
    type = type %>%  str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()
    )

INXPI104 %>% 
  ggplot(aes(
    x     = time %>% as.numeric(),
    y     = value,
    color = gender %>% fct_rev()
  )) +
  geom_line(size = 2) +
  facet_wrap(~ edu) +
  theme_statgl() +
  scale_color_statgl() +
  scale_y_continuous(labels = function(x) format(x, big.mark = ".", scientific = FALSE)) +
  scale_x_continuous(breaks = scales:: pretty_breaks()) + 
  labs(
    title    = INXPI104 %>% pull(type) %>% unique(),
    subtitle = INXPI104 %>% pull(unit) %>% unique(),
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg5$figs$fig1$cap[language]
  )

Statistikbanken

Metode


tab <- 
  INXPI104 %>% 
  filter(time >= Sys.time() %>% year() - 7) %>% 
  mutate(time = time %>% fct_rev()) %>% 
  spread(time, value) %>% 
  select(-age)
  

tab %>% 
  select(-c(edu, unit, type)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["type"]] %>%  table()) %>% 
  pack_rows(index = tab[["edu"]] %>% table()) %>% 
  add_footnote(tab %>% pull(unit) %>% unique(), notation = "symbol")
2024 2023 2022 2021 2020 2019
Indkomst i alt før skat mv
Grundskole
Kvinder 186.549 178.302 172.812 165.146 162.849 159.516
Mænd 246.130 242.372 234.324 216.600 221.765 220.133
Gymnasial uddannelse
Kvinder 228.977 215.094 213.660 202.973 200.076 195.379
Mænd 349.248 338.409 327.912 321.539 306.222 307.544
Erhvervsuddannelse
Kvinder 321.476 309.519 304.231 290.398 284.749 282.021
Mænd 432.780 419.922 409.975 391.283 399.353 385.654
Kort videregående uddannelse
Kvinder 272.260 242.656 228.568 203.095 198.828 212.133
Mænd 353.615 327.698 310.500 306.983 275.872 268.076
Mellemlang videregående uddannelse
Kvinder 462.415 444.865 439.964 427.006 416.231 410.856
Mænd 596.076 571.541 550.200 539.642 528.675 535.483
Videregående uddannelse
Kvinder 671.863 614.281 609.123 601.243 589.539 575.814
Mænd 827.517 789.057 760.808 766.408 759.769 767.176
* Gennemsnit for personer med indkomsttypen (kr)
INXPI104 <- 
  INXPI104_raw %>%
  filter(
    value != "NA",
    age   == unique(INXPI104_raw %>% pull(age))[2]
  ) %>% 
  rename(
    "edu"  = `level of education`,
    "type" = `type of income`
  ) %>% 
  mutate(
    edu  = edu %>% fct_inorder(),
    type = type %>%  str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()
  )

INXPI104 %>% 
  ggplot(aes(
    x     = time %>% as.numeric(),
    y     = value,
    color = gender %>% fct_rev()
  )) +
  geom_line(size = 2) +
  facet_wrap(~ edu) +
  theme_statgl() +
  scale_color_statgl() +
  scale_y_continuous(labels = function(x) format(x, big.mark = ".", scientific = FALSE)) +
  scale_x_continuous(breaks = scales:: pretty_breaks()) + 
  labs(
    title    = paste0(
      INXPI104 %>% pull(type) %>% unique(), ", ", 
      INXPI104 %>% pull(age) %>% unique()
    ),
    subtitle = INXPI104 %>% pull(unit) %>% unique(),
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg5$figs$fig1$cap[language]
  )

Statistikbanken

Metode


tab <- 
  INXPI104 %>% 
  filter(time >= Sys.time() %>% year() - 7) %>% 
  mutate(time = time %>% fct_rev()) %>% 
  spread(time, value) %>% 
  unite(type, type, age, sep = ", ")


tab %>% 
  select(-c(edu, unit, type)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["type"]] %>%  table()) %>% 
  pack_rows(index = tab[["edu"]] %>% table()) %>% 
  add_footnote(tab %>% pull(unit) %>% unique(), notation = "symbol")
2024 2023 2022 2021 2020 2019
Indkomst i alt før skat mv, 30-34 år
Grundskole
Kvinder 191.654 186.574 176.554 171.386 165.637 161.100
Mænd 252.434 262.244 252.055 230.804 226.090 229.122
Gymnasial uddannelse
Kvinder 238.633 209.734 202.595 207.268 191.671 188.423
Mænd 320.323 314.355 293.683 296.680 289.586 313.604
Erhvervsuddannelse
Kvinder 285.259 278.977 275.243 265.726 260.237 266.759
Mænd 432.038 417.811 406.392 380.457 357.371 347.546
Kort videregående uddannelse
Kvinder 278.932 246.090 251.569 208.128 222.469 208.038
Mænd 388.152 359.467 350.995 349.079 306.309 294.879
Mellemlang videregående uddannelse
Kvinder 403.970 386.579 383.420 377.972 359.267 359.695
Mænd 497.088 485.544 496.798 498.912 473.930 446.026
Videregående uddannelse
Kvinder 537.490 496.914 482.401 471.482 472.983 460.440
Mænd 556.644 556.060 519.394 503.610 522.714 483.043
* Gennemsnit for personer med indkomsttypen (kr)

Fordelingen af folkevalgte efter køn


FN 5.5.1 Andel af kvindelige parlamentarikere i det nationale parlament
# Import
ELEC03_raw <- 
  "https://pxweb.nordicstatistics.org:443/sq/e32a8e0a-b8fb-41ec-bbef-31c3bde52f42.csv" |> 
  read.csv() |> 
  as_tibble()

vec <- 1:24
names(vec) <- c("country", 2003:2025)

# Transform
ELEC03 <- 
  ELEC03_raw |> 
  rename(vec) |> 
  mutate(across(everything(), as.numeric),
         country = "greenland") |> 
  pivot_longer(cols = c("2003", "2004", "2005", "2006", "2007", "2008", "2009", 
                        "2010", "2011", "2012", "2013", "2014", "2015", "2016",
                        "2017", "2018", "2019", "2020", "2021", "2022", "2023",
                        "2024", "2025"),
               names_to = "time",
               values_to = "value") |> 
  drop_na(value)

# Plot
ELEC03 |> 
  ggplot(aes(
    x = time,
    y = value,
    fill = country
  )) +
  geom_col() +
  theme_statgl() +
  scale_fill_statgl() +
  theme(legend.position = "none") +
  labs(
    title   = sdg5$figs$fig2$title[language],
    x       = " ",
    y       = sdg5$figs$fig2$y_lab[language],
    fill    = " ",
    caption = sdg5$figs$fig2$cap[language]
  )

Nordic Statistics

Metode


col0 <- sdg5$figs$fig2$col0[language]

# Tabel
ELEC03 |> 
  spread(time, value) |> 
  mutate(country = col0) |> 
  rename(" " = 1) |> 
  statgl_table() |> 
  add_footnote(sdg5$figs$fig2$foot[language], notation = "symbol")
2005 2009 2013 2014 2015 2016 2017 2018 2020 2021 2025
Antal kvinder 42 29 41 43 33 33 31 42 47 32 45
* Antal ved årets udgang

Økonomisk udsatte


GS Andel af økonomisk udsatte i befolkningen efter køn
# Import 
SOXOU01_raw <-
  statgl_url("SOXOU01", lang = language) %>%
  statgl_fetch(
    "inventory variable" = c("Andel50", "Andel60"),
    gender               = 1:2,
    year                 = px_all(),
    .col_code            = TRUE
    ) %>% 
    as_tibble()

# Transform
SOXOU01 <-
  SOXOU01_raw %>% 
  mutate(
    year   = year %>%  make_date(),
    gender = gender %>% fct_inorder()
    )

# Plot
SOXOU01 %>% 
  mutate(`inventory variable` = `inventory variable` %>% str_to_sentence()) %>% 
  ggplot(aes(
    x    = year,
    y    = value,
    fill = gender)) +
  geom_col(position = "dodge") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ",")
    ) +
  facet_wrap(~ `inventory variable`) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg5$figs$fig3$title[language],
    subtitle = sdg5$figs$fig3$sub[language],
    x        = " ", 
    y        = " ", 
    fill     = " ",
    caption  = sdg5$figs$fig3$cap[language]
  )

Statistikbanken

Metode


# Transform
SOXOU01 <-
  SOXOU01_raw %>% 
  arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 5) %>% 
  mutate(year = year %>% fct_inorder()) %>% 
  unite(combi, 1, 2, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(1, 3)

vec      <- SOXOU01[-1] %>% colnames() %>% str_split(",") %>% unlist() %>% str_to_sentence()
head_vec <- vec[c(T, F)] %>% table()
col_vec  <- vec[c(F, T)]

# Table
SOXOU01 %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  add_footnote(
    sdg5$figs$fig3$foot[language],
    notation = "symbol"
    )
Andel under 50%
Andel under 60%
andel under 50%,Kvinder andel under 50%,Mænd andel under 60%,Kvinder andel under 60%,Mænd
2024 4,5 5,3 8,0 9,2
2023 3,9 5,0 7,7 8,7
2022 4,1 4,7 7,7 8,6
2021 3,8 4,3 7,4 7,9
* Procentvis andel under 50 eller 60% af medianindkomsten.

Trintest-resultater


GS Trintest resultater efter køn
# Import
UDXTKK_raw <-
  statgl_url("UDXTKK", lang = language) %>%
  statgl_fetch(subject   = px_all(),
               grade     = px_all(),
               sex       = 1:2,
               unit      = "B",
               time      = px_all(),
               .col_code = TRUE
               ) %>% 
    as_tibble()

# Transform
UDXTKK <- 
  UDXTKK_raw %>% 
  mutate(
    time     = time %>% make_date(),
     subject =  subject %>% fct_inorder()
    )

fig_legend   <- statgl_url("UDXTKK", lang = language) %>% statgl_fetch() %>% select(1) %>% colnames()
fig_title    <- (statgl_url("UDXTKK", lang = language) %>% statgl_meta())$title
fig_subtitle <- UDXTKK_raw[["unit"]] %>% unique()
  
# Plot
UDXTKK %>% 
  ggplot(aes(
    x = time,
    y = value,
    color = subject
  )) +
  geom_line(size = 2) +
  facet_grid(grade ~ sex) +
  theme_statgl() + 
  scale_color_statgl() +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  labs(
    title    = fig_title,
    subtitle = fig_subtitle,
    x        = " ",
    y        = " ",
    color    = fig_legend,
    caption  = sdg5$figs$fig4$cap[language]
  )

Statistikbanken

Metode


UDXTKK <- 
  UDXTKK_raw %>% 
  mutate(
    subject = subject %>% fct_inorder(),
    grade   = grade %>% fct_inorder(),
    sex     = sex %>% fct_inorder()
    ) %>% 
  arrange(subject, time) %>% 
  unite(combi, 2, 1, 3, sep = ",") %>% 
  spread(1, 4) %>% 
  arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5)

vec       <- UDXTKK %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec1 <- rep((vec[c(F, T, F)])[1:8] %>% table(), 2)
head_vec2 <- vec[c(T, F, F)] %>% table()
col_vec   <- vec[c(F, F, T)] 

# Table
UDXTKK %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  mutate_all(~replace(., is.na(.), 0)) %>% 
  statgl_table(col.names = c(" ", col_vec),
               replace_0s = TRUE) %>% 
  add_header_above(c(" ", head_vec1)) %>% 
  add_header_above(c(" ", head_vec2)) %>% 
  pack_rows(index = UDXTKK[["unit"]] %>% table())
  1. klasse
  1. klasse
Dansk
Engelsk
Grønlandsk
Matematik
Dansk
Engelsk
Grønlandsk
Matematik
  1. klasse,Dansk,Drenge
  1. klasse,Dansk,Piger
  1. klasse,Engelsk,Drenge
  1. klasse,Engelsk,Piger
  1. klasse,Grønlandsk,Drenge
  1. klasse,Grønlandsk,Piger
  1. klasse,Matematik,Drenge
  1. klasse,Matematik,Piger
  1. klasse,Dansk,Drenge
  1. klasse,Dansk,Piger
  1. klasse,Engelsk,Drenge
  1. klasse,Engelsk,Piger
  1. klasse,Grønlandsk,Drenge
  1. klasse,Grønlandsk,Piger
  1. klasse,Matematik,Drenge
  1. klasse,Matematik,Piger
Løsningssikkerhed (pct. rigtige)
2024 39 43 0 0 43 48 51 46 41 45 80 88 50 59 41 38
2023 45 48 0 0 48 48 56 48 42 50 82 90 54 64 41 42
2022 39 44 0 0 40 43 48 48 44 59 75 86 57 66 41 41
2021 46 48 0 0 45 50 53 49 47 59 71 76 54 66 41 38

Karaktergennemsnit


GS Prøvekarakterer efter køn
# Import
UDXFKK_raw <-
  statgl_url("UDXFKK", lang = language) %>% 
  statgl_fetch(unit             = "andel",
               grade            = "FO",
               subject          = c("01", "02", "03", "04"),
               "type of grades" = 56:58,
               sex              = 1:2,
               time             = px_all(),
               .col_code = TRUE) %>% 
    as_tibble()

# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  separate(`type of grades`, c("split1", "split2"),  " - ") %>% 
  mutate(split2 = split2 %>% str_to_title(),
         split1 = split1 %>% str_to_lower(),
         time = time %>% make_date()) %>% 
  unite(combi, 2, 4, sep = ", ")

fig_title    <- (statgl_url("UDXFKK", lang = language) %>% statgl_meta())$title
fig_y        <- UDXFKK[["unit"]] %>% unique() %>% str_to_title()
fig_subtitle <- UDXFKK[["combi"]] %>% unique()

# Plot
UDXFKK %>% 
  ggplot(aes(
    x     = time,
    y     = value, 
    color = sex
    )) +
  geom_line(size = 1.5) +
  facet_grid(split2 ~ subject) +
  scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ",", 
    accuracy     = 1
    )) +
  theme_statgl() + 
  scale_color_statgl(guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = fig_title,
    subtitle = fig_subtitle,
    x        = " ",
    y        = fig_y,
    color    = " ",
    caption  = sdg5$figs$fig5$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  filter(time >= year(Sys.Date()) - 6,
         value != "NA") %>% 
  separate(`type of grades`, c("split1", "split2"),  " - ") %>% 
  mutate(split2 = split2 %>% str_to_title(),
         split1 = split1 %>% str_to_lower()) %>% 
  unite(combi1, 2, 4, sep = ", ") %>% 
  unite(combi2, 3, 4, sep = ",") %>% 
  spread(3, ncol(.)) %>% 
  arrange(desc(time))

vec      <- UDXFKK %>% select(-(1:4)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(T, F)] %>% table()
col_vec  <- vec[c(F, T)]

# Table
UDXFKK %>% 
  select(-(1:2), -4) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = UDXFKK[[1]] %>% str_to_title() %>% table()) %>% 
  pack_rows(index = UDXFKK[["time"]] %>% table() %>% rev()) %>% 
  add_footnote(UDXFKK[[2]] %>% unique(),
               notation = "symbol")
Dansk
Engelsk
Grønlandsk
Matematik
Dansk,Færdighedsprøve Dansk,Mundtlig Dansk,Skriftlig Engelsk,Færdighedsprøve Engelsk,Mundtlig Engelsk,Skriftlig Grønlandsk,Færdighedsprøve Grønlandsk,Mundtlig Grønlandsk,Skriftlig Matematik,Færdighedsprøve Matematik,Mundtlig Matematik,Skriftlig
Karaktergennemsnit
2024
Drenge 3,36 4,30 2,79 5,54 7,90 5,10 4,15 6,11 4,45 5,11 5,47 2,55
Piger 4,05 5,00 3,58 5,73 7,16 5,58 5,57 7,47 6,14 4,51 5,74 2,41
2023
Drenge 3,92 6,16 3,39 5,60 6,60 4,39 3,50 6,30 3,84 5,14 5,81 2,89
Piger 4,18 6,13 4,28 5,52 7,34 4,73 4,49 6,74 5,65 4,49 5,37 3,07
2022
Drenge 3,43 3,86 2,78 4,76 6,27 3,82 3,37 5,87 4,60 4,95 5,26 2,41
Piger 4,71 5,55 4,22 5,55 6,74 5,07 3,98 7,49 6,18 4,84 5,22 2,61
2021
Drenge 3,93 4,89 2,59 4,73 6,66 3,75 3,11 5,67 4,18 5,06 4,79 2,16
Piger 4,93 5,74 4,00 5,03 6,36 4,40 3,94 6,21 6,31 4,84 4,94 2,17
* Folkeskolens afgangselever, prøvekarakter


På grund af Covid-19 har der ikke været afholdt afgangseksamen i 2020.

Højest fuldførte uddannelse


GS Højst fuldførte uddannelse blandt 35-39 årige efter køn
# Import
UDXISCPROD_raw <-
  statgl_url("UDXISCPROD", lang = language) %>% 
  statgl_fetch(
    ISCED11_level = px_all(),
    Sex           = px_all(),
    Aar           = px_all(),
    alder_grp     = "35-39",
    .col_code     = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISCPROD <-
  UDXISCPROD_raw %>% 
  filter(ISCED11_level != UDXISCPROD_raw[[2]][1]) %>% 
  mutate(
    ISCED11_level = ISCED11_level %>% factor(level = unique(ISCED11_level) %>% rev()),
    Aar           = Aar %>% make_date()
    )

# Plot
UDXISCPROD %>% 
  arrange(ISCED11_level) %>% 
  ggplot(aes(
    x    = Aar,
    y    = value,
    fill = ISCED11_level
  )) +
  geom_area(position = "fill") +
  facet_wrap(~ Sex) +
  scale_y_continuous(labels = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl(base_size = 11) +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE, nrow = 3)) +
  labs(
    title    = sdg5$figs$fig6$title[language],
    subtitle = unique(UDXISCPROD[["age"]]),
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg5$figs$fig6$cap[language]
  )

Statistikbanken

Metode


UDXISCPROD <- 
  UDXISCPROD_raw %>% 
  filter(
    ISCED11_level != UDXISCPROD_raw[[2]][1],
    Aar > year(Sys.Date()) - 7
    ) %>% 
  mutate(
    ISCED11_level = ISCED11_level %>% factor(levels = unique(ISCED11_level))
    ) %>% 
  arrange(ISCED11_level, desc(Aar)) %>% 
  unite(combi, 3, 4, sep = "-") %>% 
  mutate(combi = combi %>% factor(level = unique(combi))) %>% 
  spread(3, 4, sep = "-")

vec      <- (UDXISCPROD %>% select(-(1:2)) %>% colnames() %>% str_split("-") %>% unlist())[c(F, T, T)]
head_vec <- vec[c(F, T)] %>% table() %>% rev()
col_vec  <- vec[c(T, F)]

UDXISCPROD %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE, col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = UDXISCPROD[["alder_grp"]] %>% table())
2024
2023
2022
2021
2020
combi-Kvinder-2024 combi-Mænd-2024 combi-Kvinder-2023 combi-Mænd-2023 combi-Kvinder-2022 combi-Mænd-2022 combi-Kvinder-2021 combi-Mænd-2021 combi-Kvinder-2020 combi-Mænd-2020
35-39 år
Grundskole 10. klasses niveau 783 1.228 705 1.199 655 1.125 627 1.068 631 1.037
Gymnasial uddannelse 117 99 112 84 104 79 105 70 91 63
Erhvervsuddannelse 619 686 611 678 583 658 584 697 601 688
Suppleringskurser 41 48 37 43 37 32 32 26 30 23
Kort videregående uddannelse 106 98 96 81 84 75 88 70 87 76
Bacheloruddannelse 43 17 41 15 41 17 35 13 35 13
Professionsbacheloruddannelse 347 109 332 111 320 114 320 98 301 94
Kandidatuddannelse 119 69 109 70 111 68 105 68 86 70
Phd. og forskeruddannelse 8 3 8 4 6 3 6 3 6 1

Beskæftigelse


GS Hovedbeskæftigelse blandt fastboende, efter brancher og køn
ARXBFB01_raw <-
  statgl_url("ARXBFB01", lang = language) |> 
  statgl_fetch(
    beskbrch  = c("01","02","03","04","05","06","07","08","09","10","11","12","13","14","15","16"),
    sex       = c("M","K"),
    opg_var   = "G",
    aar       = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ARXBFB01 <-
  ARXBFB01_raw %>% 
  mutate(
    aar     = aar %>% make_date(),
    beskbrch = beskbrch %>% fct_reorder(value) %>% fct_rev()
    ) %>% 
  arrange(beskbrch)

# Plot
ARXBFB01 %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = sex
    )) +
  geom_area() +
  facet_wrap(~ beskbrch, scales = "free", labeller = label_wrap_gen()) +
  theme_statgl(base_size = 8) + 
  scale_fill_statgl(reverse = TRUE) +
  scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
    )) +
    labs(
      title = unique(ARXBFB01[[4]]),
      subtitle = sdg5$figs$fig7$title[language],
      x        = " ",
      y        = sdg5$figs$fig7$y_lab[language],
      fill     = " ",
      caption  = sdg5$figs$fig7$cap[language]
      )

Statistikbanken

Metode


ARXBFB01 <- 
  ARXBFB01_raw %>% 
  filter(aar >= year(Sys.time()) - 6) %>% 
  mutate(beskbrch = beskbrch %>% fct_reorder(value) %>% fct_rev()) %>% 
  arrange(beskbrch, aar) %>% 
  unite(combi, 2, 3, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(2, ncol(.))

vec      <- ARXBFB01 %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(F, T)] %>% table()
col_vec  <- vec[c(T, F)]

ARXBFB01 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = ARXBFB01[[2]] %>% table())
2020
2021
2022
2023
2024
Mænd,2020 Kvinder,2020 Mænd,2021 Kvinder,2021 Mænd,2022 Kvinder,2022 Mænd,2023 Kvinder,2023 Mænd,2024 Kvinder,2024
Hovedbeskæftigelse i gennemsnit pr. måned
Offentlig forvaltning og service 3.883 8.858 3.966 8.931 3.929 8.929 3.817 8.919 3.863 8.973
Fiskeri og fiskerirelateret industri og handel 3.862 708 3.662 669 3.655 658 3.799 683 3.677 649
Engroshandel og detailhandel 1.494 1.425 1.533 1.496 1.552 1.530 1.575 1.508 1.608 1.506
Bygge- og anlægsvirksomhed 1.865 178 2.103 206 2.129 204 2.080 195 1.998 187
Transport og godshåndtering 1.546 460 1.514 448 1.563 484 1.596 495 1.568 500
Overnatningsfaciliteter og restaurationsvirksomhed 317 356 360 436 376 480 423 510 436 486
Information og kommunikation 422 197 415 197 382 186 375 184 359 174
Administrative tjenesteydelser og hjælpetjenester 272 160 246 149 234 154 241 175 267 201
Energi- og vandforsyning 361 77 361 77 348 69 353 71 359 72
Øvrige serviceerhverv 154 151 158 149 156 155 155 165 143 172
Liberale, videnskabelige og tekniske tjenesteydelser 158 109 173 116 177 123 179 120 166 115
Fast ejendom 152 104 143 98 139 112 155 121 136 120
Pengeinstitut og finansvirksomhed 75 129 76 131 78 140 84 145 109 196
Fremstillingsvirksomhed 185 50 189 49 195 52 193 59 176 52
Råstofindvinding 65 25 85 34 73 34 56 29 59 34
Landbrug, skovbrug og landbrugsrelateret industri og handel 85 19 92 18 80 18 68 15 70 15

Ledighed


GS Ledighedsprocent efter køn
# Import

url <- paste0("https://bank.stat.gl/api/v1/", language, "/Greenland/AR/AR40/ARXLED3.px")

ARXLED3_raw <-
  statgl_url("ARXLED3", lang = language) |> 
  statgl_fetch(
    sex       = c("M", "K"),
    alder_grp = px_all(),
    aar       = px_all(),
    opg_var   = "P",
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ARXLED3 <-
  ARXLED3_raw %>% 
  mutate(
    aar = aar %>% make_date(),
    alder_grp  = alder_grp %>% factor(levels = unique(alder_grp))
    )

# Plot
ARXLED3 %>% 
  ggplot(aes(
    x     = aar, 
    y     = value,
    color = sex
    )) +
  geom_line(size = 1.5) +
  facet_wrap(~ alder_grp, scales = "free") +
  theme_statgl() + scale_color_statgl(reverse = TRUE) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ",")) +
  labs(
    title    = sdg5$figs$fig8$title[language],
    subtitle = sdg5$figs$fig8$sub[language],
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg5$figs$fig8$cap[language]
    )

Statistikbanken

Metode


ARXLED3 <- 
  ARXLED3_raw %>% 
  select(-opg_var) |> 
  mutate(
    alder_grp = alder_grp %>% fct_inorder(),
    aar = aar %>% as.numeric()
    ) %>% 
  filter(aar > max(aar) - 5) %>% 
  arrange(alder_grp, aar) %>% 
  unite(combi, aar, sex, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(combi, value)
  
vec      <- ARXLED3 %>% select(-1) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(T, F)] %>% table()
col_vec  <- vec[c(F, T)]


ARXLED3 %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  row_spec(1, bold = TRUE) %>% 
  pack_rows(index = c("Ledighedsprocent" = ARXLED3[[1]] %>% length())) %>% 
  add_footnote(
    sdg5$figs$fig8$foot[language],
    notation = "symbol")
2020
2021
2022
2023
2024
2020,Mænd 2020,Kvinder 2021,Mænd 2021,Kvinder 2022,Mænd 2022,Kvinder 2023,Mænd 2023,Kvinder 2024,Mænd 2024,Kvinder
Ledighedsprocent
Alle 4,9 4,2 3,9 3,4 3,4 3,0 3,2 2,7 3,7 3,0
18-19 år 8,4 8,6 7,1 6,4 4,8 5,3 5,1 5,5 8,3 5,7
20-24 år 6,3 6,0 4,8 4,9 4,1 4,4 3,8 3,5 5,2 4,7
25-29 år 4,7 4,2 3,4 3,0 3,4 2,8 2,9 2,4 3,9 3,2
30-34 år 4,2 4,5 3,2 3,4 3,4 3,1 2,9 2,8 3,4 3,0
35-39 år 4,4 4,1 3,2 3,2 2,7 2,8 2,3 2,5 2,7 2,5
40-44 år 4,4 3,4 3,5 3,2 2,8 2,4 3,0 2,5 3,2 2,5
45-49 år 4,0 3,8 3,1 2,7 2,6 2,1 2,3 2,1 3,0 2,5
50-54 år 5,1 3,7 4,3 3,7 3,8 3,0 2,9 2,5 3,0 2,8
55-59 år 4,9 3,6 4,4 3,2 3,6 2,8 3,9 2,8 3,9 2,9
60 år-pensionalderen 5,3 2,7 4,1 2,9 3,9 3,0 3,8 2,9 3,8 2,3
* Procent, Ledighed i gennemsnit pr. måned blandt fastboende 18-65-årige.

Middellevetid


GS Middellevetid for 0 og 1-årige efter køn
# Import
BEXDT5A_raw <-
  statgl_url("BEXDT5A", lang = language) %>% 
  statgl_fetch(type   = "E",
               gender = c("M", "K"),
               time   = px_all(),
               age    = 0:1,
               .col_code = TRUE) %>% 
  as_tibble()

# Transform
BEXDT5A <- 
  BEXDT5A_raw %>% 
    separate(time, c("startar", "slutar"),  " - ") %>% 
  mutate(slutar = slutar %>% make_date())

# Plot
BEXDT5A %>% 
  ggplot(aes(
    x     = slutar,
    y     = value,
    color = gender
    )) +
  geom_line(size = 2) +
  facet_wrap(~ age) +
    theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  labs(
    title    = sdg5$figs$fig9$title[language],
    subtitle = sdg5$figs$fig9$sub[language],
    x        = sdg5$figs$fig9$x_lab[language],
    y        = sdg5$figs$fig9$y_lab[language],
    color    = " ",
    caption  = sdg5$figs$fig9$cap[language]
    )

Statistikbanken


# Transform
BEXDT5A <-
  BEXDT5A_raw %>% 
  arrange(desc(time), age) %>% 
  unite(combi, 2, 3, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(2, 4) %>% 
  arrange(desc(time)) %>% 
  mutate(timetime = time) %>% 
  separate(timetime, c("time1", "time2"), " - ") %>% 
  filter(time >= year(Sys.time()) - 20) %>% 
  select(-c("time1", "time2"))

vec      <- BEXDT5A %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(F, T)] %>% table()
col_vec  <- vec[c(T, F)]

# Table
BEXDT5A %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = BEXDT5A[[1]] %>% table()) %>% 
  add_footnote(
    sdg5$figs$fig9$foot[language], 
    notation = "symbol"
    )
0
1
Mænd,0 Kvinder,0 Mænd,1 Kvinder,1
Middellevetid
2015 - 2019 68,3 73,0 68,1 72,5
2014 - 2018 68,8 73,0 68,6 72,3
2013 - 2017 68,6 73,1 68,4 72,4
2012 - 2016 68,4 73,4 68,2 72,8
2011 - 2015 68,5 72,6 68,3 72,1
2010 - 2014 68,0 72,1 67,8 71,5
2009 - 2013 67,4 72,2 67,1 71,6
2008 - 2012 67,3 71,9 67,0 71,3
2007 - 2011 67,0 71,5 66,7 71,0
2006 - 2010 66,6 71,5 66,4 71,1
* Middellevetid for 0 og 1-årige, personer født i Grønland.


Barselsdagpenge

FN 5.4.1
# Import
SOX007_raw <- 
  statgl_url("SOX007", lang = language) |> 
  statgl_fetch(
    gender    = 1:2,
    type      = 30,
    time      = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
SOX007 <- 
  SOX007_raw |> 
  mutate(value = as.numeric(value)) |> 
  select(-2)


# Plot
SOX007 |> 
  ggplot(aes(
    x     = as.integer(time),
    y     = value,
    color = gender
  )) +
  geom_line(size = 2) +
  theme_statgl() +
  scale_color_statgl() +
  labs(
    title   = sdg5$figs$fig10$title[language],
    x       = " ",
    y       = " ",
    color   = " ",
    caption = sdg5$figs$fig10$cap[language]
  )

Statistikbanken


SOX007 |> 
  filter(time >= year(Sys.time()) - 6) |> 
  spread(time, value) |> 
  rename(" " = 1) |> 
  statgl_table() |> 
  add_footnote(sdg5$figs$fig10$foot[language], notation = "symbol")
2020 2021 2022 2023
Kvinde 867 834 718 625
Mand 165 148 128 94
* Antal personer