Tilbage


Delmål 4: Kvalitetsuddannelse

Børn i dagtilbud, 3-5 år


FN 4.2.2 Antal børn i dagtilbud (3-5 år)
# Import
OFXUKN1_raw <-
  statgl_url("OFXUKN1", lang = language) %>% 
  statgl_fetch(
    born_var   = 3:5,
    inst_type2 = 1:5,
    .col_code  = TRUE
    ) %>% 
  as_tibble()

# Transform
OFXUKN1 <-
  OFXUKN1_raw %>% 
  mutate(across(where(is.integer), ~ if_else(is.na(.x), 0, .x))) |> 
  summarise(value = sum(value), .by = c(inst_type2, aar)) |> 
  mutate(
    aar = aar %>% make_date(),
    inst_type2 = inst_type2 %>% fct_inorder(),
    alder = "Børn 3-5 år"
    )

# Plot
OFXUKN1 %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = inst_type2
  )) +
  geom_col() +
  scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = FALSE, nrow = 2)) +
  labs(
    title    = sdg4$figs$fig1$title[language],
    subtitle = OFXUKN1[[4]][1],
    x        = " ",
    y        = sdg4$figs$fig1$y_lab[language],
    fill     = " ",
    caption  = sdg4$figs$fig1$cap[language]
  )

Statistikbanken


# Transform
OFXUKN1 <-
  OFXUKN1_raw %>% 
  #arrange(desc(time)) %>% 
  filter(aar >= year(Sys.time()) - 5) %>% 
  mutate(across(where(is.integer), ~ if_else(is.na(.x), 0, .x))) |> 
  summarise(value = sum(value), .by = c(inst_type2, aar)) |> 
  mutate(
    aar = aar %>% factor(levels = unique(aar)),
    inst_type2 = inst_type2 %>% fct_inorder(),
    alder = "Børn 3-5 år"
    ) %>% 
  spread(aar, value)

# Table
OFXUKN1 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = table(OFXUKN1[[2]])) %>% 
  add_footnote(
    sdg4$figs$fig1$foot[language], 
    notation = "symbol"
    )
2021 2022 2023 2024
Børn 3-5 år
Vuggestue 102 149 189 151
Børnehave 1.943 1.876 1.869 1.895
Intergrede institutioner 21 27 10 4
Dagplejer 120 114 115 130
Andre offentlige dagtilbud 9 5 18 3
* Antal børn i dagtilbud
# Import
OFXUKN1_raw <-
  statgl_url("OFXUKN1", lang = language) %>% 
  statgl_fetch(
    born_var   = 3:5,
    inst_type2 = 1:5,
    bosted     = 1:2,
    .col_code  = TRUE
    ) %>% 
  as_tibble()

# Transform
OFXUKN1 <-
  OFXUKN1_raw %>% 
  mutate(
    inst_type2 = inst_type2 %>% fct_inorder(),
    bosted  = bosted %>% fct_inorder(),
    aar = aar %>% make_date(),
    born_var = "Børn 3-5 år",
    across(where(is.integer), ~ if_else(is.na(.x), 0, .x))
    ) |> 
  summarise(value = sum(value), .by = c(inst_type2, born_var, bosted, aar))

# Plot
OFXUKN1 %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = inst_type2
    )) +
  geom_col() +
  facet_wrap(~ bosted, scales = "free_y") +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = FALSE, nrow = 2)) +
  labs(
    title    = sdg4$figs$fig2$title[language],
    subtitle = OFXUKN1[[2]][1],
    x        = " ",
    y        = sdg4$figs$fig2$y_lab[language],
    fill     = NULL,
    caption  = sdg4$figs$fig2$cap[language]
  )

Statistikbanken

# Transform
OFXUKN1 <- 
  OFXUKN1_raw %>% 
  mutate(born_var = "Børn 3-5 år",
    across(where(is.integer), ~ if_else(is.na(.x), 0, .x))) |> 
  #arrange(desc(time)) %>%
  summarise(value = sum(value), .by = c(inst_type2, born_var, bosted, aar)) |> 
  filter(aar >= year(Sys.time()) - 5) %>% 
  mutate(aar = aar %>% factor(levels = unique(aar))) %>% 
  spread(aar, value) |> 
  arrange(bosted)

# Table
OFXUKN1 %>% 
  select(-c(2, 3)) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = table(OFXUKN1[[2]])) %>% 
  pack_rows(index = table(OFXUKN1[[3]])) %>% 
  add_footnote(
    sdg4$figs$fig2$foot[language], 
    notation = "symbol"
    )
2021 2022 2023 2024
Børn 3-5 år
By
Andre offentlige dagtilbud 9 5 18 3
Børnehave 1.885 1.815 1.790 1.833
Dagplejer 11 17 9 7
Intergrede institutioner 0 0 0 0
Vuggestue 94 133 178 140
Bygd
Andre offentlige dagtilbud 0 0 0 0
Børnehave 58 61 79 62
Dagplejer 109 97 106 123
Intergrede institutioner 21 27 10 4
Vuggestue 8 16 11 11
* Antal børn i dagtilbud

Trintest-resultater


FN 4.1.1 Løsningssikkerhed for trintests i folkeskolens 3. og 7. klasse
# Import
UDXTKB_raw <-
  statgl_url("UDXTKB", lang = language) %>%
  statgl_fetch(
    subject   = px_all(),
    grade     = c(3, 7),
    unit      = "B",
    .col_code = TRUE) %>% 
  as_tibble()

# Transform
UDXTKB <-
  UDXTKB_raw %>% 
  mutate(
    time     = time %>% make_date(),
     subject =  subject %>% fct_inorder()
    )

# Plot
UDXTKB %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = subject
    )) +
  geom_line(size = 2) +
  facet_wrap(~ grade) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = sdg4$figs$fig3$title[language],
    subtitle = UDXTKB[[3]][1],
    x        = " ",
    y        = " ",
    color    = sdg4$figs$fig3$color[language],
    caption  = sdg4$figs$fig3$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTKB <- 
  UDXTKB_raw %>% 
  arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  arrange(grade, desc(subject)) %>% 
  unite(combi, 1, 2, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(1, ncol(.))

vec      <- UDXTKB %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- table(vec[c(F, T)])
col_vec  <- vec[c(T, F)]

# Table
UDXTKB %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = table(UDXTKB[[1]]))
  1. klasse
  1. klasse
Matematik,3. klasse Grønlandsk,3. klasse Engelsk,3. klasse Dansk,3. klasse Matematik,7. klasse Grønlandsk,7. klasse Engelsk,7. klasse Dansk,7. klasse
Løsningssikkerhed (pct. rigtige)
2024 49 45 NA 41 40 56 84 42
2023 52 48 NA 48 41 59 86 45
2022 48 41 NA 41 41 62 82 51
2021 51 48 NA 47 40 61 73 50



# Import
UDXTKB_raw <-
  statgl_url("UDXTKB", lang = language) %>%
  statgl_fetch(
    subject              = px_all(),
    grade                = c(3, 7),
    unit                 = "B",
    "place of residence" = 1:2,
    .col_code            = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTKB <-
  UDXTKB_raw %>% 
  mutate(
    time = time %>% make_date(),
    `place of residence` = `place of residence` %>% fct_inorder(),
    subject = subject %>% fct_inorder()
    )

# Plot
UDXTKB %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = subject
  )) +
  geom_line(size = 2) +
  facet_grid(grade ~ `place of residence`) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = sdg4$figs$figX$title_fig4,
    subtitle = UDXTKB[[4]][1],
    x        = " ",
    y        = " ",
    color    = sdg4$figs$fig4$color[language],
    caption  = sdg4$figs$fig4$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTKB <- 
  UDXTKB_raw %>% 
  arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  arrange(grade, subject) %>% 
  unite(combi, 1, 2, 3, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(1, 4) 

vec       <- UDXTKB[-(1:2)] %>% colnames() %>% str_split(",") %>% unlist()
head_vec1 <- rep(vec[c(F, T, F)][1:8] %>% table(), 2)
head_vec2 <- vec[c(F, F, T)] %>% table()
col_vec   <- vec[c(T, F, F)]

UDXTKB %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec1)) %>% 
  add_header_above(c(" ", head_vec2)) %>% 
  pack_rows(index = table(UDXTKB[[1]]))
  1. klasse
  1. klasse
Dansk
Engelsk
Grønlandsk
Matematik
Dansk
Engelsk
Grønlandsk
Matematik
By,Dansk,3. klasse Bygd,Dansk,3. klasse By,Engelsk,3. klasse Bygd,Engelsk,3. klasse By,Grønlandsk,3. klasse Bygd,Grønlandsk,3. klasse By,Matematik,3. klasse Bygd,Matematik,3. klasse By,Dansk,7. klasse Bygd,Dansk,7. klasse By,Engelsk,7. klasse Bygd,Engelsk,7. klasse By,Grønlandsk,7. klasse Bygd,Grønlandsk,7. klasse By,Matematik,7. klasse Bygd,Matematik,7. klasse
Løsningssikkerhed (pct. rigtige)
2024 42 38 NA NA 43 48 48 56 45 34 86 55 55 57 39 40
2023 50 36 NA NA 48 49 53 45 47 40 88 73 57 66 43 40
2022 41 43 NA NA 41 52 47 52 54 40 86 53 62 61 41 39
2021 48 39 NA NA 48 47 52 50 52 45 76 54 59 62 40 41



Folkeskolens afgangseksamen


GS Prøvekarakterer for folkeskolens afgangselever
# Import
UDXFKK_raw <-
  statgl_url("UDXFKK", lang = language) %>% 
  statgl_fetch(
    unit             = "andel",
    grade            = "FO",
    subject          = c("01", "02", "03", "04"),
    "type of grades" = 56:58,
    .col_code        = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  mutate(
    `type of grades` = `type of grades` %>% str_remove_all("Prøvekarakter -") %>% trimws() %>% str_to_title(),
    subject          = subject %>% fct_inorder(),
    time             = time %>% make_date()
    )

# Plot
UDXFKK %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = `type of grades`
    )) +
  geom_line(size = 2) +
  facet_wrap( ~ subject, ncol = 2) +
  theme_statgl() + 
  scale_color_statgl(guide = guide_legend(nrow = 3)) +
  labs(
    title   = sdg4$figs$fig5$title[language],
    color   = sdg4$figs$fig5$color[language],
    x       = " ",
    y       = sdg4$figs$fig5$y_lab[language],
    caption = sdg4$figs$fig5$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  mutate(
    `type of grades` = `type of grades` %>% 
      str_remove_all("Prøvekarakter -") %>%
      trimws() %>%
      str_to_title()
    ) %>% 
  #arrange(desc(time)) %>% 
  filter(
    value != "NA",
    time >= year(Sys.time()) - 5
    ) %>% 
  mutate(
    subject = subject %>% fct_inorder(),
    time = time %>% factor(levels = unique(time)),
    ) %>% 
  spread(5, 6) %>% 
  arrange(subject)

# Table
UDXFKK %>% 
  select(-(1:3)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(UDXFKK[[1]] %>% str_to_title())) %>% 
  pack_rows(index = table(UDXFKK[[3]])) %>% 
  add_footnote(UDXFKK[[2]][1], notation = "symbol")
2021 2022 2023 2024
Karaktergennemsnit
Grønlandsk
Færdighedsprøve 3,56 3,72 3,99 4,86
Mundtlig 5,96 6,81 6,54 6,80
Skriftlig 5,35 5,48 4,75 5,30
Dansk
Færdighedsprøve 4,47 4,14 4,05 3,70
Mundtlig 5,36 4,85 6,15 4,63
Skriftlig 3,36 3,58 3,82 3,18
Matematik
Færdighedsprøve 4,94 4,89 4,82 4,81
Mundtlig 4,88 5,24 5,58 5,60
Skriftlig 2,17 2,52 2,98 2,48
Engelsk
Færdighedsprøve 4,90 5,20 5,56 5,63
Mundtlig 6,49 6,52 6,99 7,55
Skriftlig 4,11 4,51 4,56 5,34
* Folkeskolens afgangselever


På grund af Covid-19 har der ikke været afholdt afgangseksamen i 2020.



Overgang fra folkeskole til videre uddannelse


GS Overgang fra folkeskolen til ungdomsuddannelse
# Import
UDXTRFA1_raw <-
  statgl_url("UDXTRFA1", lang = language) %>% 
  statgl_fetch(
    aar       = 2,
    status    = px_all(),
    dim_aar   = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTRFA1 <-
  UDXTRFA1_raw %>%
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% make_date())

  


# Plot
UDXTRFA1 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  scale_fill_statgl(reverse = TRUE) +
  theme_statgl() +
  labs(
    title    = sdg4$figs$fig6$title[language],
    subtitle = sdg4$figs$fig6$sub[language],
    x        = sdg4$figs$fig6$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig6$fill[language],
    caption  = sdg4$figs$fig6$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRFA1 <- 
  UDXTRFA1_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  #arrange(desc(`graduation year`)) %>% 
  filter(dim_aar >= year(Sys.time()) - 8) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(3, 4)

# Table
UDXTRFA1 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  add_footnote(
    sdg4$figs$fig6$foot[language],
    notation = "symbol"
  )
2018 2019 2020 2021 2022 2023
Afbrudt 108 82 96 97 116 0
Aktiv 243 250 269 252 226 0
Ej påbegyndt 340 311 312 357 330 0
Gennemført 7 5 7 3 6 0
* Antal personer, overgang fra folkeskolen til ungdomsuddannelse (2 år efter folkeskolens afgangsprøve).



# Import
UDXTRFA1_raw <-
  statgl_url("UDXTRFA1", lang = language) %>% 
  statgl_fetch(
    aar       = 2,
    status    = px_all(),
    dim_aar   = px_all(),
    sex       = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTRFA1 <-
  UDXTRFA1_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% make_date())

# Plot
UDXTRFA1 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  facet_wrap(~ sex) +
  scale_y_continuous(labels  = scales::percent_format()) +
  scale_fill_statgl(reverse = TRUE) +
  theme_statgl() +
  labs(
    title    = sdg4$figs$fig7$title[language],
    subtitle = sdg4$figs$fig7$sub[language],
    x        = sdg4$figs$fig7$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig7$fill[language],
    caption  = sdg4$figs$fig7$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRFA1 <- 
  UDXTRFA1_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  #arrange(desc(`graduation year`)) %>% 
  filter(dim_aar >= year(Sys.time()) - 8) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(4, 5) %>% 
  arrange(status)
  
# Table
UDXTRFA1 %>% 
  select(-1, -3) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = table(UDXTRFA1[[3]])) %>% 
  add_footnote(
    sdg4$figs$fig7$foot[language],
    notation = "symbol"
  )
2018 2019 2020 2021 2022 2023
Afbrudt
Kvinder 63 37 51 53 71 0
Mænd 45 45 45 44 45 0
Aktiv
Kvinder 142 148 150 141 132 0
Mænd 101 102 119 111 94 0
Ej påbegyndt
Kvinder 169 137 142 176 161 0
Mænd 171 174 170 181 169 0
Gennemført
Kvinder 0 2 0 1 0 0
Mænd 7 3 7 2 6 0
* Antal personer, overgang fra folkeskolen til ungdomsuddannelse (2 år efter folkeskolens afgangsprøve).



Overgang fra gymnasium til videre uddannelse


GS Overgang fra gymnasial uddannelse til videre uddannelse
# Import
UDXTRGU2_raw <-
  statgl_url("UDXTRGU2", lang = language) %>% 
  statgl_fetch(
    aar     = 2,
    status  = px_all(),
    dim_aar = px_all(),
    .col_code = TRUE) %>% 
  as_tibble()

# Transform
UDXTRGU2 <-
  UDXTRGU2_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 2) |> 
  mutate(dim_aar = dim_aar %>% make_date())

# Plot
UDXTRGU2 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
    )) +
  geom_col(position = "fill") +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 100, 
    accuracy = 1, 
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg4$figs$fig8$title[language],
    subtitle = sdg4$figs$fig8$sub[language],
    x        = sdg4$figs$fig8$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig8$fill[language],
    caption  = sdg4$figs$fig8$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRGU2 <-
  UDXTRGU2_raw %>% 
  filter(dim_aar >= year(Sys.time()) - 9 & dim_aar < year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(3, 4)

# Table
UDXTRGU2 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  add_footnote(
    sdg4$figs$fig8$foot[language],
    notation = "symbol"
    )
2017 2018 2019 2020 2021 2022
Afbrudt 61 46 50 54 67 45
Aktiv 134 137 131 112 124 125
Ej påbegyndt 104 89 87 93 95 68
Gennemført 29 32 35 36 26 31
* Antal personer, overgang fra folkeskolen til ungdomsuddannelse (2 år efter folkeskolens afgangsprøve).



# Import
UDXTRGU2_raw <-
  statgl_url("UDXTRGU2", lang = language) %>% 
  statgl_fetch(
    aar       = 2,
    status    = px_all(),
    dim_aar   = px_all(),
    sex       = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTRGU2 <- 
  UDXTRGU2_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) |> 
  mutate(dim_aar = dim_aar %>% make_date())

# Plot
UDXTRGU2 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  facet_wrap( ~ sex) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg4$figs$fig9$title[language],
    subtitle = sdg4$figs$fig9$sub[language],
    x        = sdg4$figs$fig9$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig9$fill[language],
    caption  = sdg4$figs$fig9$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRGU2 <-
  UDXTRGU2_raw %>% 
  #arrange(desc(`graduation year`)) %>% 
  filter(dim_aar >= year(Sys.time()) - 8 & dim_aar < year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(4, 5) %>% 
  arrange(status)

# Table
UDXTRGU2 %>% 
  select(-c(1, 3)) %>% 
  rename("  " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = UDXTRGU2[[3]] %>% table()) %>% 
  add_footnote(
    sdg4$figs$fig9$foot[language],
    notation = "symbol"
  )
2018 2019 2020 2021 2022
Afbrudt
Kvinder 33 34 31 46 32
Mænd 13 16 23 21 13
Aktiv
Kvinder 85 82 80 91 79
Mænd 52 49 32 33 46
Ej påbegyndt
Kvinder 51 38 49 58 36
Mænd 38 49 44 37 32
Gennemført
Kvinder 19 26 24 14 22
Mænd 13 9 12 12 9
* Antal personer, overgang fra gymnasium til ungdomsuddannelse (2 år efter studentereksamen).

Aktive studerende i uddannelse


GS Antal aktive studerende i uddannelse efter uddannelsesniveau og land
# Import
UDXISC11B_raw <-
  statgl_url("UDXISC11B", lang = language) %>% 
  statgl_fetch(
    isced = px_all(),
    .col_code            = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  mutate(taar = taar %>% make_date(),
        isced = isced %>%  fct_inorder() %>% fct_rev(),
        value = value * 10^-3)

# Plot
UDXISC11B %>% 
  ggplot(aes(
    x    = taar,
    y    = value,
    fill = isced
  )) +
  geom_col() +
   guides(fill = guide_legend(nrow = 4, byrow = TRUE)) +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = FALSE)) +
  labs(
    title   = sdg4$figs$fig10$title[language],
    x       = " ",
    y       = sdg4$figs$fig10$y_lab[language],
    fill    = NULL,
    caption = sdg4$figs$fig10$cap[language]
  )

Statistikbanken


# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  #arrange(desc(time)) %>% 
  filter(taar >= year(Sys.time()) - 6) %>% 
  mutate(
         isced = isced %>% factor(levels = unique(isced)),
         taar  = taar %>% factor(levels = unique(taar)),
         ) %>% 
  spread(2, 3)

# Table
UDXISC11B %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig10$foot[language],
    notation = "symbol"
    )
2020 2021 2022 2023 2024
Gymnasial uddannelse 1.170 1.161 1.129 1.064 1.071
Erhvervsuddannelse 1.136 1.025 1.001 921 876
Suppleringskurser 29 14 19 22 26
Kort videregående uddannelse 167 155 162 155 162
Bacheloruddannelse 373 359 346 333 353
Professionsbacheloruddannelse 550 527 528 511 528
Kandidatuddannelse 170 165 155 154 150
* Antal personer, aktive studerende i uddannelse.



# Import
UDXISC11B_raw <-
  statgl_url("UDXISC11B", lang = language) %>% 
  statgl_fetch(
    skoleomr   = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Translate
UDXISC11B <-
  UDXISC11B_raw %>% 
  mutate(
    taar     = taar %>% make_date(),
    skoleomr = skoleomr %>% fct_reorder(value),
    value    = value * 10^-3
    )

# Plot
UDXISC11B %>% 
  ggplot(aes(
    x    = taar,
    y    = value,
    fill = skoleomr
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title   = sdg4$figs$fig11$title[language],
    x       = " ",
    y       = sdg4$figs$fig11$y_lab[language],
    fill    = " ",
    caption = sdg4$figs$fig11$cap[language] 
  )

Statistikbanken


# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  #arrange(desc(time)) %>% 
  filter(taar >= year(Sys.time()) - 6) %>% 
  mutate(
    taar    = taar %>% fct_inorder(),
    skoleomr = skoleomr %>% fct_inorder
    ) %>% 
  spread(2, 3)

# Table
UDXISC11B %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig11$foot[language],
    notation = "symbol"
    )
2020 2021 2022 2023 2024
Skoler i Grønland 3.061 2.922 2.806 2.638 2.580
Skoler i Danmark 510 464 512 506 569
Skoler i udlandet 24 20 22 16 17
* Antal personer, aktive studerende i uddannelse.



FN 4.3.1 Antal aktive studerende i uddannelse efter køn
# Import
UDXISC11B_raw <-
  statgl_url("UDXISC11B", lang = language) %>% 
  statgl_fetch(
    sex       = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  mutate(
    taar  = taar %>% make_date(),
    sex   = sex %>% reorder(value),
    value = value * 10^-3
    )

# Plot
UDXISC11B %>% 
  ggplot(aes(
    x    = taar,
    y    = value,
    fill = sex
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl() +
  labs(
    title   = sdg4$figs$fig12$title[language],
    x       = " ",
    y       = sdg4$figs$fig12$y_lab[language],
    fill    = " ",
    caption = sdg4$figs$fig12$cap[language]
  )

Statistikbanken


# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  #arrange(desc(time)) %>% 
  filter(taar >= year(Sys.time()) - 6) %>% 
  mutate(taar = taar %>% fct_inorder()) %>% 
  spread(2, 3)

# Table
UDXISC11B %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig12$foot[language],
    notation = "symbol"
    )
2020 2021 2022 2023 2024
Kvinder 2.232 2.117 2.109 2.010 2.006
Mænd 1.363 1.289 1.231 1.150 1.160
* Antal personer, aktive studerende i uddannelse.



Fuldførte uddannelser


GS Antal fuldførte uddannelsesforløb
# Import
UDXISC11D_raw <-
  statgl_url("UDXISC11D", lang = language) %>% 
  statgl_fetch(
    Isced     = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11D <-
  UDXISC11D_raw %>%
  mutate(
    slutaar              = slutaar %>% make_date(),
    id                   = row_number(),
    Isced = Isced %>% str_remove("uddannelse"),
    Isced = Isced %>% fct_reorder(id, .fun = min, na.rm = TRUE) %>% fct_rev()
  )

# Plot
UDXISC11D %>% 
  ggplot(aes(
    x    = slutaar,
    y    = value,
    fill = Isced
    )) +
  geom_col() +
  scale_y_continuous(labels = scales::number_format(
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ",")) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE, nrow = 4)) +
  labs(
    title    = sdg4$figs$fig13$title[language],
    subtitle = sdg4$figs$fig13$sub[language],
    x        = " ",
    y        = sdg4$figs$fig13$y_lab[language],
    fill     = sdg4$figs$fig13$fill[language],
    caption  = sdg4$figs$fig13$cap[language] 
  )

Statistikbanken

Metode


# Transform
UDXISC11D <- 
  UDXISC11D_raw %>% 
  #arrange(desc(time)) %>% 
  filter(slutaar >= year(Sys.time()) - 6) %>% 
  mutate(
    Isced    = Isced %>% fct_inorder(),
    slutaar  = slutaar %>% fct_inorder()
    ) %>% 
  spread(2, 3)

# Table
UDXISC11D %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig13$foot[language],
    notation = "symbol"
    )
2020 2021 2022 2023 2024
Gymnasial uddannelse 310 318 282 333 293
Erhvervsuddannelse 411 448 376 403 362
Suppleringskurser 125 141 119 99 89
Kort videregående uddannelse 68 66 62 62 62
Bacheloruddannelse 47 54 55 56 53
Professionsbacheloruddannelse 107 119 103 88 95
Kandidatuddannelse 40 35 32 35 28
* Antal personer, højest fuldførte uddannelsesforløb.



# Import
UDXISC11D_raw <-
  statgl_url("UDXISC11D", lang = language) %>% 
  statgl_fetch(
    Isced     = px_all(),
    sex       = px_all(),
    skoleomr  = c("A_SG", "B_SD"),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11D <- 
  UDXISC11D_raw %>% 
  mutate(
    Isced    = Isced %>% str_remove("uddannelse") %>% trimws(),
    Isced    = Isced %>% fct_inorder() %>% fct_rev(),
    sex      = sex  %>% fct_inorder(),
    skoleomr = skoleomr %>% fct_inorder,
    slutaar  = slutaar    %>% make_date()
  )

# Plot
UDXISC11D %>% 
  ggplot(aes(
    x = slutaar,
    y = value, 
    fill = Isced
  )) +
  geom_col() +
  facet_grid(skoleomr ~ sex, 
             scales = "free_y") +
  scale_y_continuous(labels = scales::number_format(
    accuracy = 1, 
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, 
                    guide = guide_legend(reverse = TRUE, nrow = 4)) +
  labs(
    title    = sdg4$figs$fig14$title[language],
    subtitle = sdg4$figs$fig14$sub[language],
    x        = " ",
    y        = sdg4$figs$fig14$y_lab[language],
    fill     = sdg4$figs$fig14$fill[language],
    caption  = sdg4$figs$fig14$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXISC11D <- 
  UDXISC11D_raw %>% 
  #arrange(desc(time)) %>% 
  filter(slutaar >= year(Sys.time()) - 4) %>% 
  mutate(
    slutaar  = slutaar %>% fct_inorder(),
    Isced    = Isced %>% fct_inorder(),
    skoleomr = skoleomr %>% fct_inorder()
    ) %>% 
  unite(combi, 2, 4, sep = ",") %>%  
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(2, 4)

vec      <- UDXISC11D[-(1:2)] %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- table(vec[c(F, T)]) %>% rev()
col_vec  <- vec[c(T, F)]

# Table
UDXISC11D %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  pack_rows(index = table(UDXISC11D[[1]])) %>% 
  add_header_above(c(" ", head_vec))
2024
2023
2022
Mænd,2022 Mænd,2023 Mænd,2024 Kvinder,2022 Kvinder,2023 Kvinder,2024
Gymnasial uddannelse
Skoler i Grønland 86 84 107 163 214 166
Skoler i Danmark 17 6 7 13 26 11
Erhvervsuddannelse
Skoler i Grønland 164 166 147 198 222 197
Skoler i Danmark 8 6 7 5 8 10
Suppleringskurser
Skoler i Grønland 41 27 30 75 67 59
Skoler i Danmark 1 2 0 2 3 0
Kort videregående uddannelse
Skoler i Grønland 17 11 18 27 35 29
Skoler i Danmark 8 5 7 10 10 7
Bacheloruddannelse
Skoler i Grønland 8 15 16 24 29 22
Skoler i Danmark 7 6 3 14 5 11
Professionsbacheloruddannelse
Skoler i Grønland 17 15 10 75 52 65
Skoler i Danmark 4 9 6 7 12 14
Kandidatuddannelse
Skoler i Grønland 2 2 2 10 10 9
Skoler i Danmark 6 8 7 13 15 8



Uddannelsesniveau blandt 35-39-årige


GS Uddannelsesniveau blandt 35-39-årige
# Import
UDXISCPROF_raw <-
  statgl_url("UDXISCPROF", lang = language) %>% 
  statgl_fetch(
    alder_grp     = "35-39",
    ISCED11_level = c(20, 34, 35, 40, 50, 64, 65, 70, 80),
    .col_code     = TRUE
    ) %>% 
  as_tibble()
  
# Transform
UDXISCPROF <-
  UDXISCPROF_raw %>% 
  mutate(
    id = row_number(),
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse") %>% 
    fct_reorder(id, .fun = min, na.rm = T) %>% fct_rev()
    )

# Plot
UDXISCPROF %>% 
  mutate(Aar = Aar %>% make_date()) %>% 
  ggplot(aes(
    x    = Aar, 
    y    = value,
    fill = ISCED11_level
    )) +
  geom_area(position = "fill") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl(base_size = 11) +
  guides(fill = guide_legend(nrow = 3, byrow = TRUE)) +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg4$figs$fig15$title[language],
    subtitle = UDXISCPROF[[2]][1],
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg4$figs$fig15$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXISCPROF <- 
  UDXISCPROF_raw %>% 
  #arrange(desc(time)) %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  mutate(
    Aar           = Aar %>% fct_inorder(),
    ISCED11_level = ISCED11_level %>% fct_inorder()
    ) %>% 
  spread(3, 4)

# Table
UDXISCPROF %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(UDXISCPROF[[1]])) %>% 
  add_footnote(
    sdg4$figs$fig15$foot[language], 
    notation = "symbol"
    )
2021 2022 2023 2024
35-39 år
Grundskole 10. klasses niveau 1.695 1.780 1.904 2.011
Gymnasial uddannelse 175 183 196 216
Erhvervsuddannelse 1.281 1.241 1.289 1.305
Suppleringskurser 58 69 80 89
Kort videregående uddannelse 158 159 177 204
Bacheloruddannelse 48 58 56 60
Professionsbacheloruddannelse 418 434 443 456
Kandidatuddannelse 173 179 179 188
Phd. og forskeruddannelse 9 9 12 11
* Antal personer, højest fuldførte uddannelse.



# Import
UDXISCPROD_raw <-
  statgl_url("UDXISCPROD", lang = language) %>% 
  statgl_fetch(
    alder_grp     = "35-39",
    ISCED11_level = c(20, 34, 35, 40, 50, 64, 65, 70, 80),
    Bsted         = px_all(),
    .col_code     = TRUE
    ) %>% 
  as_tibble()
  
# Transform
UDXISCPROD <-
  UDXISCPROD_raw %>% 
  mutate(
    id                   = row_number(),
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse") %>% 
           fct_reorder(id, .fun = min, na.rm = TRUE) %>% fct_rev(),
    Aar                 = Aar %>% make_date()
    )

# Plot
UDXISCPROD %>% 
  ggplot(aes(
    x    = Aar,
    y    = value,
    fill = ISCED11_level
    )) +
  geom_area(position = "fill") +
  facet_wrap(~ Bsted) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl(base_size = 11) +
  guides(fill = guide_legend(nrow = 3, byrow = TRUE)) +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg4$figs$fig16$title[language],
    subtitle = UDXISCPROD[[3]][1],
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg4$figs$fig16$cap[language]
  )

Statistikbanken

Metode


UDXISCPROD <-
  UDXISCPROD_raw %>% 
  #arrange(desc(time)) %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  mutate(
    Aar = Aar %>% fct_inorder(),
    ISCED11_level = ISCED11_level %>% fct_inorder()
  ) %>% 
  arrange(ISCED11_level) %>% 
  unite(combi, 2, 4, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(2, ncol(.))

vec      <- colnames(UDXISCPROD[-(1:2)]) %>% str_split(",") %>% unlist()
head_vec <- table(vec[c(F, T)]) %>% rev()
col_vec  <- vec[c(T, F)]

UDXISCPROD %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec), replace_0s = TRUE) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  add_footnote(
    sdg4$figs$fig16$foot[language], 
    notation = "symbol"
    )
2024
2023
2022
2021
By,2021 By,2022 By,2023 By,2024 Bygd,2021 Bygd,2022 Bygd,2023 Bygd,2024
Grundskole 10. klasses niveau 1.388 1.505 1.620 1.748 307 275 284 263
Gymnasial uddannelse 162 171 182 204 13 12 14 12
Erhvervsuddannelse 1.170 1.135 1.178 1.198 111 106 111 107
Suppleringskurser 57 67 77 88 1 2 3 1
Kort videregående uddannelse 157 155 172 199 1 4 5 5
Bacheloruddannelse 48 58 55 60 0 0 1 0
Professionsbacheloruddannelse 404 412 428 438 14 22 15 18
Kandidatuddannelse 173 179 179 188 0 0 0 0
Phd. og forskeruddannelse 9 9 12 11 0 0 0 0
* Antal personer, højest fuldførte uddannelse.



Informations- og kommunikationsteknologi


FN 4.4.1 Andel af 16-74 årige med uddannelse indenfor informations- og kommunikationsteknologi
# Import
UDXISCPROE_raw1 <-
  statgl_url("UDXISCPROE", lang = language) %>% 
  statgl_fetch(
    ISCED11_level  = c(35, 50, 64, 65, 70),
    ISCED11_sektor = c("06"),
    .col_code      = TRUE
    ) %>% 
  as_tibble()

UDXISCPROE_raw2 <-
  statgl_url("UDXISCPROE", lang = language) %>% 
  statgl_fetch(
    ISCED11_level = "00",
    .col_code     = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISCPROE <-
  UDXISCPROE_raw1 %>% 
  rename(tæller = value) %>% 
  left_join(UDXISCPROE_raw2 %>% rename(nævner = value) %>% select(-1)) %>% 
  mutate(
    procent       = tæller / nævner * 100,
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse"),
    Aar           = Aar %>% make_date()
    )

# Plot
UDXISCPROE %>% 
  ggplot(aes(
    x    = Aar,
    y    = procent,
    fill = ISCED11_level
  )) +
  geom_col() +
  scale_y_continuous(labels = scales::percent_format(
    scale        = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, palette  = "spring") +
  guides(fill = guide_legend(nrow = 2, byrow = TRUE)) +
  labs(
    title    = sdg4$figs$fig17$title[language],
    subtitle = sdg4$figs$fig17$sub[language],
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg4$figs$fig17$cap[language]
  )

Statistikbanken

# Transform
UDXISCPROE <-
  UDXISCPROE_raw1 %>% 
  rename(tæller = value) %>% 
  left_join(UDXISCPROE_raw2 %>% rename(nævner = value) %>% select(-1)) %>% 
  mutate(
    procent              = tæller / nævner * 100,
    procent              = procent %>% round(1),
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse")
    ) %>% 
  #arrange(desc(time)) %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  mutate(
    ISCED11_level = ISCED11_level %>% fct_inorder(),
    Aar           = Aar %>% fct_inorder()
  ) %>% 
  select(-c(2, 4:5)) %>% 
  spread(2, 3)
  
# Table
UDXISCPROE %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig17$foot[language],
    notation = "symbol")
2021 2022 2023 2024
Erhvervs 0,3 0,3 0,3 0,3
Kort videregående 0,2 0,2 0,2 0,2
Bachelor 0,0 0,0 0,0 0,0
Professionsbachelor 0,0 0,0 0,0 0,0
Kandidat 0,0 0,0 0,0 0,1
* Procentvis andel af unge og voksne med faglige kvalifikationer inden for informations- og kommunikationsteknologi blandt 16-74 årige.