Utertiguk


Anguniagaq 9: Suliffissuit, nutaaliorneq attaveqaasersuutillu

Ilisimatuut


FN 9.5.2 Ph.D-mik ilisimatuutullu ilinniarsimasut amerlassusaat
# Import
UDXISCPROD_raw <-
  statgl_url("UDXISCPROD", lang = language) %>% 
  statgl_fetch(
    ISCED11_level = 80,
    Sex           = px_all(),
    Aar           = px_all(),
    .col_code     = TRUE
    ) %>% 
  as_tibble()
 
# Transform
UDXISCPROD <- 
  UDXISCPROD_raw %>% 
  mutate(
    Aar = Aar %>% make_date(),
    Sex = Sex %>% fct_inorder()
    )

# Plot
UDXISCPROD %>% 
  ggplot(aes(
    x    = Aar,
    y    = value,
    fill = Sex
  )) +
  geom_col() +
  #facet_wrap(~ gender) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  labs(
    title   = sdg9$figs$fig1$title[language],
    x       = " ",
    y       = sdg9$figs$fig1$y_lab[language],
    fill    = " ",
    caption = sdg9$figs$fig1$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
UDXISCPROD <- 
  UDXISCPROD_raw %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  #arrange(desc(time)) %>% 
  mutate(Aar = Aar %>% factor(levels = unique(Aar))) %>% 
  spread(3, 4)

# Table
UDXISCPROD %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = UDXISCPROD[[1]] %>% table())
2021 2022 2023 2024
Ilisimatuunngorniarneq
Angutit 30 27 26 23
Arnat 32 35 39 37

Inuussutissarsiutit aaqqissuussaanerat


GS Akissarsialiornerit annertussusaat malillugit suliffeqarfiit amerlassusaat
# Import
ESD6A_raw <-
  statgl_url("ESX6A", lang = language) %>% 
  statgl_fetch(
    aar         = px_all(),
    ai2         = px_all(),
    section     = "total",
    .col_code   = TRUE
  ) %>% 
    as_tibble() |> 
  filter(ai2 != "Total")

# transform
ESD6A <- 
  ESD6A_raw %>%
  mutate(
    ai2 = ai2 %>% str_remove_all("[A-K]|\\.") %>% trimws() %>% fct_inorder() %>% fct_rev(),
    aar = aar %>% make_date()
  )


# legend ...
fill_lab <- colnames(statgl_url("ESX6A", lang = language) %>% statgl_fetch() %>% as_tibble())[1] %>% str_to_sentence()

# Plot
ESD6A %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = ai2
  )) +
  geom_area() +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg9$figs$fig2$title[language],
    subtitle = sdg9$figs$fig2$sub[language],
    x        = " ",
    y        = ESD6A[["unit"]][1],
    fill     = fill_lab,
    caption  = sdg9$figs$fig2$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# col lab
col_lab        <- 1
names(col_lab) <- fill_lab


# transform
ESD6A <- 
  ESD6A_raw %>%
  mutate(
    ai2 = ai2 %>% 
      str_remove_all("[A-K]|\\.") %>% 
      trimws() %>% 
      fct_inorder() %>% 
      fct_rev(),
    ) %>% 
  filter(aar >= Sys.time() %>% year() - 5) %>% 
  mutate(aar = aar %>% fct_inorder() %>% fct_rev()) %>% 
  spread(aar, value) %>% 
  arrange(desc(ai2)) %>% 
  rename(col_lab)

# table
ESD6A %>%  
  statgl_table() %>% 
  add_footnote(ESD6A[["unit"]][1], notation = "symbol")
Akissarsialiussaqassuseq section 2022 2021
00-10 Katillugit 359 354
10-50 Katillugit 585 680
50-100 Katillugit 473 557
100-250 Katillugit 785 818
250-500 Katillugit 590 613
500-1000 Katillugit 407 372
1000-5000 Katillugit 517 477
5000-10000 Katillugit 88 81
10000-it sinnerlugit Katillugit 110 111
atillugit Katillugit 3.914 4.063



# Import
ESX5A_raw <-
  statgl_url("ESX5A", lang = language) %>% 
  statgl_fetch(
    nykom      = 1:5,
    ai2        = px_all(),
    aar        = px_all(),
    .col_code  = TRUE
    ) %>% 
  as_tibble() |> 
  filter(ai2 != "Total")

ESX5A <- 
  ESX5A_raw %>% 
  rename(lonsum = ai2) %>% 
  mutate(
    aar    = aar %>% make_date(),
    lonsum = lonsum %>% str_remove_all("[A-K]|\\.") %>% trimws() %>% fct_inorder() %>% fct_rev()
  )


# Plot
ESX5A %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = lonsum
  )) +
  geom_area() +
  facet_wrap(~ nykom, scales = "free") +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg9$figs$fig3$title[language],
    subtitle = sdg9$figs$fig3$sub[language],
    x        = " ",
    y        = ESX5A[[3]][1],
    fill     = fill_lab,
    caption  = sdg9$figs$fig3$cap[language]
  )

Kisitsisaataasivik

Periaaseq


ESX5A <- 
  ESX5A_raw %>% 
  rename(lonsum = ai2) %>% 
  filter(aar >= Sys.time() %>% year() - 5) %>% 
  mutate(
    aar    = aar %>% fct_inorder() %>% fct_rev(),
    nykom  = nykom %>% fct_inorder(),
    lonsum = lonsum %>% str_remove_all("[A-K]|\\.") %>% trimws() %>% fct_inorder() %>% fct_rev()
    ) %>% 
  spread(aar, value) %>% 
  arrange(nykom, desc(lonsum))

ESX5A %>% 
  select(nykom) %>% 
  rename(col_lab) %>% 
  statgl_table() %>% 
  pack_rows(index = ESX5A[["nykom"]] %>% table())
Akissarsialiussaqassuseq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Kommuneqarfik Sermersooq
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Qeqqata Kommunia
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Kujalleq
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Kommune Qeqertalik
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia
Avannaata Kommunia

Aalisakkat saniatigut nunanut allanut tunisat allat


GS Nunanut allanut tunisinermi aalisarnermut tunngasut annertussusaat
# Import
IEXSITC_raw <-
  statgl_url("IEXSITC", lang = language) %>% 
  statgl_fetch(quarter     = 0,
               processing  = c("G11", "3"),
               transaction = 2,
               time        = px_all(),
               .col_code   = TRUE
               ) %>% 
    as_tibble()

# Transform
step <-
  IEXSITC_raw %>% 
  mutate(processing = processing %>% str_remove_all("[:digit:]|\\-") %>% trimws(which = "left")) %>% 
  arrange(time, processing)

IEXSITC <- 
  step %>% 
  mutate(export = fct_reorder(processing, -value, sum, na.rm = TRUE),
         time = make_date(time),
         value = value / 10^9) 
# Plot
IEXSITC %>% 
  ggplot(aes(
    x = time,
    y = value, 
    fill = export
  )) +
  geom_area(position = "identity") +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title = sdg9$figs$fig4$title[language],
    y     = sdg9$figs$fig4$y_lab[language],
    x     = " ",
    fill  = " ",
    caption = sdg9$figs$fig4$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
IEXSITC <- 
  step %>% 
  mutate(
    export = fct_reorder(processing, -value, sum, na.rm = TRUE),
    value = value / 10^9
    ) 

tab <- 
  IEXSITC %>% 
  select(-2, -3) %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(time, value)

# Table
tab %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[[1]] %>% table()) %>% 
  row_spec(1, bold = TRUE) %>% 
  add_footnote(sdg9$figs$fig4$foot[language], notation = "symbol")
2021 2022 2023 2024 2025
Ukioq tamaat
Katillugit 5,11 5,88 6,50 5,52 NA
Aalisagaq, peqquk qaleruaqanngitsullu 4,78 5,64 5,86 4,95 NA
* Koruunit milliardinngorlugit
# Import
IEXSITC_raw <-
  statgl_url("IEXSITC", lang = language) %>%
  statgl_fetch(processing  = px_all(),
               transaction = 2,
               time        = px_all(),
               .col_code   = TRUE
               ) %>% 
    as_tibble()

# Transform
IEXSITC <- 
  IEXSITC_raw %>% 
  filter(processing %in% unique(IEXSITC_raw[[1]])[c(16, 26, 45, 55, 65, 74)]) %>% 
  mutate(
    time       = time %>% make_date(),
    value      = value / 10^6,
    processing = processing %>% str_remove_all("[:digit:]|\\-") %>% trimws()
    )

# Plot
IEXSITC %>% 
  ggplot(aes(
    x = time, 
    y = value,
    fill = processing
    )) +
  geom_area() + 
  facet_wrap(~ processing, labeller = label_wrap_gen(30)) +
  scale_fill_statgl() +
  theme_statgl() +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  theme(legend.position = "none") +
  labs(
    title = sdg9$figs$fig5$title[language],
    x = " ", 
    y = sdg9$figs$fig5$y_lab[language],
    fill = " ",
    caption = sdg9$figs$fig4$cap[language]
 )

Kisitsisaataasivik

Periaaseq


# Transform
IEXSITC <- 
  IEXSITC_raw %>% 
  filter(processing %in% unique(IEXSITC_raw[[1]])[c(16, 26, 45, 55, 65, 74)],
         time >= year(Sys.time()) -7,
         value != "NA") %>% 
  #arrange(desc(time)) %>% 
  mutate(
    value      = round(value / 10^6, 3),
    processing = processing %>% str_remove_all("[:digit:]|\\-") %>% trimws(),
    time       = time %>% factor(levels = unique(time))
    ) %>% 
  spread(3,4)

# Table
IEXSITC %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = IEXSITC[[2]] %>% str_to_title() %>% table()) %>% 
  add_footnote(sdg9$figs$fig5$foot[language], notation = "symbol")
2019 2020 2021 2022 2023 2024
Avammut Tunisat
Atortussiassat nerineqarsinnaanngitsut (ikummatissaq minillugu), katillugit 7,882 6,824 7,135 11,907 11,294 13,291
Ikummatissat punnerusaallu katillugit 0,004 0,079 0,002 0,004 0,017 0,141
Maskiinat assartuutillu, katillugit 315,276 326,187 232,384 179,201 556,847 516,213
Nioqqutissat aningaasanillu nuussinerit assigiinngitsut katillugit 108,924 91,546 74,050 9,617 19,494 4,548
Nioqqutissiat suliareriikkat allani ilaanngitsut katillugit 11,720 5,117 4,683 16,185 26,685 24,564
Nioqqutissiat suliareriikkat suliareqqitassallu 5,699 13,193 8,149 16,420 20,536 11,039
* Koruunit millioninngorlugit

Suliffissuaqarnermi naleqarnerulersitsineq


FN 9.2.1 Suliffissuaqarnermi naleqarnerulersitsineq
# Import
BVT <-
  statgl_url("NRX0418", lang = language) %>% 
  statgl_fetch(units    = "L",
               industry = px_all(),
               time     = px_all(),
               .col_code  = TRUE
               ) %>% 
    as_tibble() %>% 
  mutate(value = value/1000)


BVT <- BVT %>%  filter(industry %in% unique(BVT %>% pull(2))[9])


BNP <-
  statgl_url("NRX10", lang = language) %>% 
  statgl_fetch(
    units   = "L",
    account = "02",
    time    = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
industry <- 
  BVT %>% 
  rename("BVT" = 4) %>% 
  left_join(BNP %>% rename("BNP" = 4)) %>% 
  mutate(value = BVT / BNP,
         time = time %>% as.numeric())

# Plot
industry %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = units
  )) +
  geom_line(size = 2) +
  scale_y_continuous(labels = scales:: percent) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg9$figs$fig6$title[language],
    subtitle = industry[[1]][1],
    x        = " ",
    y        = sdg9$figs$fig6$y_lab[language],
    caption  = sdg9$figs$fig6$cap[language]
  )

Kisitsisaataasivik, naleqarnerulersitsineq

Kisitsisaataasivik, BNP innuttaasunut agguarlugu


tab <- 
  industry %>% 
  select(industry, time, value) %>% 
  mutate(
    industry = industry %>% str_remove_all("C "),
    value    = value * 100
    ) %>% 
  #arrange(desc(time)) %>% 
  filter(time >= max(time) - 5) %>% 
  mutate(time = time %>% as.character() %>%  fct_inorder()) %>% 
  mutate(value = value %>% round(2)) %>% 
  mutate(value = paste0(value, "%")) %>% 
  spread(time, value)

tab %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(sdg9$figs$fig6$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Tunisassiorneq 0.29% 0.19% 0.16% 0.11% 0.23% 0.15%
* BNP-p innuttaasumut ataatsimut annertussusaa procentinngorlugu.

Suliffissuaqarnermi sulifillit


FN 9.2.2 Suliffissuaqarnermi sulifillit
# Import
NRX0518_raw <-
  statgl_url("NRX0518", lang = language) %>% 
  statgl_fetch(
    units    = "BES",
    industry = c("C", "TOT"),
    time     = px_all(),
    .col_code  = TRUE
    ) %>% 
    as_tibble()


NRX0518 <- 
  NRX0518_raw %>% 
  spread(industry, value) %>% 
  rename("indu" = 3, "total" = 4) %>% 
  mutate(
    value = indu / total,
    time = time %>% as.numeric()
    )



NRX0518 %>% 
  ggplot(aes(
    x = time,
    y = value,
    color = units
  )) +
  geom_line(size = 2) +
  expand_limits(y = 0) +
  scale_y_continuous(labels  = scales::percent_format(scale = 100, accuracy = 1, big.mark = ".",
  decimal.mark = ",")) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title = sdg9$figs$fig7$title[language],
    x = " ",
    y = sdg9$figs$fig7$y_lab[language],
    caption = sdg9$figs$fig7$cap[language]
  )

Kisitsisaataasivik


NRX0518 %>% 
  select(time, value) %>% 
  #arrange(desc(time)) %>% 
  filter(time >= max(time) - 5) %>% 
  mutate(time = time %>% as.character() %>%  fct_inorder()) %>% 
  mutate(
    value = value * 100,
    value = value %>% round(1)
    ) %>% 
  spread(time, value) %>% 
  statgl_table() %>% 
  add_footnote(sdg9$figs$fig7$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
5,8 5,4 5,6 5,4 5,4 5,4
* Sulisut tamakkerlutik annertussusaat procentinngorlugu