Utertiguk


Anguniagaq 8: Suliffiit naapertuuttut aningaasarsiornikkullu siuariartorneq

BNP innuttaasumut ataatsimut


FN 8.1.1 Ukiumut innuttaasumut ataatsimut BNP-p ineriartornera
# Import
NRX10_raw <- 
  statgl_url("NRX10", lang = language) %>% 
  statgl_fetch(
    units     = "K",
    account   = "02",
    time       = px_all(),
    .col_code = TRUE
               ) %>% 
  as_tibble()

# transform 
NRX10 <- 
  NRX10_raw %>% 
  mutate(time = time %>% as.numeric()) %>% 
  mutate(value = (value - lag(value)) / lag(value))


NRX10 %>% 
  ggplot(aes(
    x = time,
    y = value,
    fill = account
  )) +
  geom_col() +
  scale_fill_statgl() + 
  theme_statgl() +
  theme(legend.position = "none") +
  scale_y_continuous(labels = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  labs(
    title    = sdg8$fig$fig1$title[language],
    subtitle = NRX10[[1]][1],
    x        = " ",
    y        = sdg8$fig$fig1$y_lab[language],
    fill     = " ",
    caption  = sdg8$fig$fig1$cap[language]
  )

Kisitsisaataasivik, BNP

Kisitsisaataasivik, suliffillit


tab <- 
  NRX10 %>% 
  mutate(value = value*100) %>% 
  filter(time >= max(time) - 5) %>% 
  arrange(desc(time)) %>% 
  select(-account) %>% 
  mutate(time = time %>% as.character())


if(language != "en"){
  
  table <- 
    tab %>% 
    select(-units) %>% 
    mutate(value = value %>% round(1)) %>% 
    rename(" " = 1, "Realvækst" = value) %>% 
    statgl_table() %>% 
    pack_rows(index = tab[[1]] %>% table()) %>% 
    add_footnote(sdg8$fig$fig1$foot1[language], notation = "symbol")
  
} else {
  
   table <- 
    tab %>% 
    select(-units) %>% 
    mutate(value = value %>% round(1)) %>% 
    rename(" " = 1, "Real growth rate" = value) %>% 
    statgl_table() %>% 
    pack_rows(index = tab[[1]] %>% table()) %>% 
    add_footnote(sdg8$fig$fig1$foot1[language], notation = "symbol")

}


table
Realvækst
Akiusimasunit kisitat (2010-imi akit)
2023 0,8
2022 1,7
2021 1,0
2020 0,1
2019 2,6
2018 0,6
* Ineriartorneq procentinngorlugu (2010-mi akit, akiusimasunit kisitat)

Suliffillit


GS Innuttaasunut tamanut naleqqiullugu suliffillit annertussusaat
ARXBFB05_raw <-
  statgl_url("ARXBFB05", lang = language) |> 
  statgl_fetch(
    aar       = px_all(),
    komdist   = px_all(),
    opg_var   = "H",
    .col_code = T
  ) |> 
  as_tibble()


# Transform
ARXBFB05 <- 
  ARXBFB05_raw %>% 
  mutate(aar = aar %>% make_date(),
         komdist = komdist %>% factor(levels = unique(komdist)))

# Plot
ARXBFB05 %>% 
  filter(komdist == ARXBFB05[[1]][1]) %>% 
  ggplot(aes(
    x     = aar,
    y     = value,
    color = komdist
    )) +
  geom_line(linewidth = 2) +
  facet_wrap(~ komdist, scales = "free") +
    scale_y_continuous(labels = scales::percent_format(
      scale      = 1, 
      accuracy   = 0.1, 
      big.mark   = ".",
      decimal.mark = ","
      )) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg8$fig$fig2$title[language],
    subtitle = ARXBFB05[[1]][1],
    x        = " ",
    y        = " ",
    caption  = sdg8$fig$fig2$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
ARXBFB05 <- 
  ARXBFB05_raw %>% 
  filter(
    komdist == ARXBFB05_raw[[1]][1],
    aar     >= year(Sys.time()) - 7
    ) %>% 
  arrange(desc(aar))

vec        <- 1:2
names(vec) <- c(" ", sdg8$fig$fig2$cols$col2[language])

# Table
ARXBFB05 %>% 
  select(2, ncol(.)) %>% 
  rename(vec) %>% 
  statgl_table() %>% 
  pack_rows(index = ARXBFB05[[3]] %>% table()) %>% 
  add_footnote(ARXBFB05[[1]][1], notation = "symbol")
Suliffillit annertussusaat
Agguaqatigiissillugu qaammammut suliffillit innuttaasut amerlassusaannut naleqqiullugit (pct.)
2023 67,6
2022 67,2
2021 66,6
2020 66,0
2019 66,6
2018 66,1
* Nuna tamakkerlugu (kommunit avataanni inissisimasut ilanngullugit)

Suliffissaaleqineq


FN 8.5.2 Ukiut malillugit suliffissaaleqinerup annertussusaa
ARXLED3_raw <-
  statgl_url("ARXLED3", lang = language) |> 
  statgl_fetch(
    aar       = px_all(),
    distrikt  = "AA",
    alder_grp = "1",
    opg_var   = "P",
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
ARXLED3 <-
  ARXLED3_raw %>% 
  mutate(aar = aar %>% make_date()) %>% 
  unite(combi, 1, 2, 4, sep = ", ")

# Plot
ARXLED3 %>% 
  ggplot(aes(
    x     = aar,
    y     = value,
    color = combi
    )) +
  geom_line(size = 2) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 0.1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  labs(
    title    = sdg8$fig$fig3$title[language],
    subtitle = ARXLED3[[1]][1],
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg8$fig$fig3$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform

ARXLED3 %>% 
  mutate(aar = aar %>% year()) %>% 
  filter(aar > year(Sys.time()) - 8) %>% 
  spread(aar, value) %>% 
  mutate(combi = sdg8$fig$fig3$cols$ncol[language][[1]]) %>% 
  rename(" " = 1) %>% 
  statgl_table()
2018 2019 2020 2021 2022 2023
Suliffissaaleqineq procentinngorlugu 5 4,3 4,5 3,7 3,2 2,9



ARXLED4_raw <-
  statgl_url("ARXLED3", lang = language) |> 
  statgl_fetch(
    aar       = px_all(),
    distrikt  = "AA",
    opg_var   = "P",
    alder_grp = px_all(),
    .col_code = T
    ) %>% 
  as_tibble()

# Transform
ARXLED4 <- 
  ARXLED4_raw %>% 
  filter(alder_grp != ARXLED4_raw[[2]][1]) %>% 
  arrange(desc(aar)) %>% 
  mutate(alder_grp = alder_grp %>% factor(levels = unique(alder_grp)),
         aar = aar %>% make_date()) %>% 
  unite(combi, 1, 4, sep = ", ")

# Plot
ARXLED4 %>% 
  ggplot(aes(
    x     = aar, 
    y     = value,
    color = alder_grp
    )) +
  geom_line(linewidth = 1.5) +
  theme_statgl() + 
  scale_color_statgl() +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  labs(
    title    = sdg8$fig$fig4$title[language],
    subtitle = ARXLED4[[1]][1],
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg8$fig$fig4$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
ARXLED4 <- 
  ARXLED4_raw %>% 
  filter(
    alder_grp != ARXLED4_raw[[2]][1],
    aar >= year(Sys.time()) - 6
    ) %>% 
  arrange(desc(aar)) %>% 
  mutate(
    alder_grp = alder_grp %>% factor(levels = unique(alder_grp)),
    aar = aar %>% factor(levels = unique(aar))
    ) %>% 
  unite(combi, 1, 2, sep = ", ") %>% 
  spread(3, ncol(.))

vec        <- ARXLED4[[2]] %>% length()
names(vec) <- sdg8$fig$fig4$index[language]


# Table
ARXLED4 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = vec) %>% 
  pack_rows(index = table(ARXLED4$combi)) |> 
  add_footnote(ARXLED4_raw[[1]][1], notation = "symbol")
Agguaqatigiissillugu qaammammut suliffissaaleqineq pct.-inngorlugu
Suliffissaaleqineq procentinngorlugu
Nuna tamakkerlugu, 18-19-inik ukiullit
2023 5,3
2022 5,0
2021 6,8
2020 8,5
2019 7,6
Nuna tamakkerlugu, 20-24-nik ukiullit
2023 3,7
2022 4,2
2021 4,8
2020 6,1
2019 6,2
Nuna tamakkerlugu, 25-29-nik ukiullit
2023 2,6
2022 3,1
2021 3,2
2020 4,5
2019 4,7
Nuna tamakkerlugu, 30-34-nik ukiullit
2023 2,8
2022 3,2
2021 3,3
2020 4,4
2019 4,0
Nuna tamakkerlugu, 35-39-nik ukiullit
2023 2,4
2022 2,8
2021 3,2
2020 4,2
2019 4,0
Nuna tamakkerlugu, 40-44-nik ukiullit
2023 2,8
2022 2,6
2021 3,4
2020 3,9
2019 3,7
Nuna tamakkerlugu, 45-49-nik ukiullit
2023 2,2
2022 2,4
2021 2,9
2020 3,9
2019 4,0
Nuna tamakkerlugu, 50-54-inik ukiullit
2023 2,7
2022 3,4
2021 4,0
2020 4,4
2019 3,9
Nuna tamakkerlugu, 55-59-inik ukiullit
2023 3,4
2022 3,2
2021 3,9
2020 4,3
2019 3,7
Nuna tamakkerlugu, 60-inik ukiullit-soraarneruss. ukiussarititat
2023 3,4
2022 3,5
2021 3,6
2020 4,2
2019 4,2
* Nuna tamakkerlugu
GS Najugaq malillugu suliffissaaleqineq procentinngorlugu
# Import

url <- paste0("https://bank.stat.gl/api/v1/", language, "/Greenland/AR/AR40/ARXLED3.px")

ARXLED3_raw <-
  statgl_url("ARXLED3", lang = language) |> 
  statgl_fetch(
    aar       = px_all(),
    distrikt  = "AA",
    alder_grp = "1",
    opg_var   = "P",
    bybygd    = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
ARXLED3 <- 
  ARXLED3_raw %>% 
  mutate(aar = aar %>% make_date())

# Plot
ARXLED3 %>% 
  ggplot(aes(
    x     = aar,
    y     = value, 
    color = bybygd
    )) +
  geom_line(linewidth = 2) +
  theme_statgl() + 
  scale_color_statgl() +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  labs(
    title    = sdg8$fig$fig5$title[language],
    subtitle = ARXLED4[[2]][1],
    x        = " ",
    y        = " ",
    color    = " ",
    caption  = sdg8$fig$fig5$cap[language]
    )

Kisitsisaataasivik

Periaaseq


# Transform
ARXLED3 <- 
  ARXLED3_raw %>% 
  filter(aar >= year(Sys.time()) - 6) %>% 
  arrange(aar) %>% 
  mutate(aar = aar %>% factor(levels = unique(aar))) %>% 
  unite(combi, distrikt, alder_grp, sep = ", ") %>% 
  spread(1, ncol(.))

vec        <- ARXLED3[[1]] %>% length()
names(vec) <- sdg8$fig$fig5$index[language]

# Table
ARXLED3 %>% 
  select(-c(1, 3)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(ARXLED3[[1]][1], notation = "symbol") %>% 
  row_spec(1, bold = TRUE) %>% 
  pack_rows(index = vec) |> 
  pack_rows(index = table(ARXLED3$bybygd))
Nuna tamakkerlugu, Katillugit
Suliffissaaleqineq procentinngorlugu
Illoqarfiit
2019 4,1
2020 4,3
2021 3,4
2022 3,0
2023 2,7
Katillugit
2019 4,3
2020 4,5
2021 3,7
2022 3,2
2023 2,9
Nunaqarfiit il.il.
2019 6,1
2020 6,5
2021 5,4
2022 4,8
2023 4,7
* Illoqarfiit



Ilisimatusarneq ineriartortitsinerlu


GS Ilisimatusarnermut ineriartortitsinermullu aningaasartuutit BNP-mi annertussusaat
# Import
NRX09_raw <-
  statgl_url("NRX09", lang = language) %>% 
  statgl_fetch(
    units   = "L",
    account = px_all(),
    time    = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

NRX09_raw <- NRX09_raw %>% filter(account %in% unique(NRX09_raw %>% pull(account))[7])

NRX10_raw <-
  statgl_url("NRX10", lang = language) %>% 
  statgl_fetch(
    units    = "L",
    account  = "01",
    time      = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
RD_GDP <- 
  NRX10_raw %>% 
  select(3:4) %>% 
  rename(
    "time" = 1,
    "GDP"  = 2
    ) %>% 
  left_join(
    NRX09_raw %>% 
      mutate(account = account %>% str_remove_all("[:digit:]") %>% trimws()) %>% 
      select(3:4) %>% 
      rename("RD" = 2)
    ) %>% 
  mutate(pct = RD / GDP) %>% 
  filter(pct != "NA")

# Plot
RD_GDP %>% 
  ggplot(aes(
    x    = time,
    y    = pct,
    fill = time
    )) +
  geom_col() +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg8$fig$fig6$title[language],
    subtitle = NRX09_raw[[1]][1],
    x        = " ",
    y        = sdg8$fig$fig6$y_lab[language],
    caption  = sdg8$fig$fig6$cap[language]
  )

Kisitsisaataasivik, aningaasaliinerit (ilisimatusarneq ineriartortitsinerlu)

Kisitsisaataasivik, BNP


# Transform
tab <- 
  RD_GDP %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 7) %>% 
  mutate(
    time = time %>% fct_inorder(),
    pct  = pct * 100,
    pct  = pct %>% round(1),
    var  = sdg8$fig$fig6$cols$col1[language]
    ) %>% 
  select(-(2:3)) %>% 
  spread(1, 2)

# Table
tab %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(NRX09_raw[[1]][1])) %>% 
  add_footnote(sdg8$fig$fig6$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Akit ingerlaavartut, mio. kr.
Ilisimatusarnermut ineriartortitsinermullu aningaasartuutit 1,8 1,8 1,6 1,5 1,9 2,1
* BNP-mi procentinngorlugu

Nunanut allanut angalasut


GS Timmisartumik ilaasartaammik nunanut allanut angalasut amerlassusaat
# Import
TUXUPAX_raw <-
  statgl_url("TUXUPAX", lang = language) %>%
  statgl_fetch(airport   = 0,
               month     = 0,
               time      = px_all(),
               .col_code = TRUE) %>% 
  as_tibble()

# Transform
TUXUPAX <-
  TUXUPAX_raw %>% 
  mutate(value = value / 1000,
         time = time %>% make_date())

# Plot
TUXUPAX %>% 
  ggplot(aes(
    x    = time,
    y    = value, 
    fill = airport
    )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl() +
  theme(plot.margin = margin(10, 10, 10, 10),
        legend.position = "none") +
  labs(
    title = sdg8$fig$fig7$title[language],
    x = " ",
    y = sdg8$fig$fig7$y_lab[language],
    caption = sdg8$fig$fig7$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
TUXUPAX <-
  TUXUPAX_raw %>% 
  mutate(value = value) %>% 
  filter(time >= year(Sys.time()) - 7,
         value != "NA") %>% 
  arrange(desc(time))

vec <- 1:2
names(vec) <- c(" ",  sdg8$fig$fig7$cols$col2[language])


# Table
TUXUPAX %>% 
  select(-(1:2)) %>% 
  rename(vec) %>% 
  statgl_table() %>% 
  add_footnote(sdg8$fig$fig7$foot[language],
               notation = "symbol")
Timmisartumik ilaasartaammik nunanut allanut angalasut
2024 96.817
2023 96.362
2022 85.484
2021 39.293
2020 30.785
2019 86.989
2018 85.306
* Ilaasut tuusintilikkuutaarlugit.

Inuusuttut sullinniakkat


GS Inuusuttut sullinniakkat
UDXUMG3_raw <- 
  statgl_url("UDXUMG3", lang = language) %>%
  statgl_fetch(
    alder        = px_all(),
    registrering = 5:7,
    aar          = px_all(),
    .col_code    = TRUE
  ) %>% 
  as_tibble()

#sdg8 <- read_yaml("S:/STATGS/VM/SDG_dokument/input/text/txt_08.yml")

lab_vec        <- 1:5
names(lab_vec) <- 
  c(
    "age",
    "time",
    sdg8$fig$fig8$tags$tag1[language] %>% unlist(),
    sdg8$fig$fig8$tags$tag2[language] %>% unlist(),
    sdg8$fig$fig8$tags$tag3[language] %>% unlist()
)


UDXUMG3 <-
  UDXUMG3_raw %>% 
  rename("status" = registrering, "age" = alder, "time" = aar) |> 
  mutate(status = status %>% fct_inorder()) %>% 
  spread(status, value) %>% 
  rename(
    "age"   = 1,
    "time"  = 2,
    "work"  = 3,
    "none"  = 4,
    "total" = 5
  ) %>% 
  mutate(edu = total - work - none) %>% 
  select(-total) %>% 
  rename(lab_vec) %>% 
  gather(status, value, -c(age, time)) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  filter(time %in% c(min(time), mean(time), max(time))) %>%
  mutate(time = time %>% as.character() %>% fct_rev())
  

UDXUMG3 %>%
  ggplot(aes(
    x    = parse_number(age),
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  facet_wrap(~ time) + 
  scale_x_continuous(labels = function(x) round(x)) +
  scale_y_continuous(labels = scales:: percent) + 
  scale_fill_statgl(reverse = TRUE) +
  theme_statgl() + 
  labs(
    title    = sdg8$fig$fig8$title[language],
    subtitle = sdg8$fig$fig8$sub[language],
    x        = sdg8$fig$fig8$x_lab[language],
    y        = " ",
    color    = colnames(UDXUMG3_raw)[2] %>% str_to_title(),
    caption  = sdg8$fig$fig8$cap[language]
)

Kisitsisaataasivik

Periaaseq


tab <- 
  UDXUMG3 %>% 
  mutate(age = age %>% fct_inorder()) %>% 
  arrange(age, time, status) %>% 
  unite(combi, time, status, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(combi, value)

vec      <- tab %>% select(-1) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- vec[c(TRUE, FALSE)] %>% table() %>% rev()
col_vec  <- vec[c(FALSE, TRUE)]

tab %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  add_footnote(sdg8$fig$fig8$foot[language], notation = "symbol")
2023
2016
age 2023,Ilinniakkamik ingerlatsisut 2023,Suliffeqanngitsut ilinnianngitsullu 2023,Suliffillit 2016,Ilinniakkamik ingerlatsisut 2016,Suliffeqanngitsut ilinnianngitsullu 2016,Suliffillit
16-inik ukiullit 310 310 86 390 295 70
17-inik ukiullit 304 293 114 275 362 127
18-inik ukiullit 272 265 212 298 325 176
19-inik ukiullit 229 206 296 274 318 300
20-nik ukiullit 142 221 338 171 264 374
21-nik ukiullit 138 216 403 205 242 389
22-nik ukiullit 158 206 376 219 233 411
23-nik ukiullit 150 174 362 223 221 472
24-nik ukiullit 149 181 424 227 197 476
25-nik ukiullit 188 163 437 230 186 487
* Inuit amerlassusaat