Utertiguk


Anguniagaq 17: Suleqatigiinnikkut anguniagaqarneq

Pisortat aningaasaqarneranni inernerit


GS Pisortat aningaasaqarneranni inernerit
# Import 
indtagter_raw <-
  statgl_url("OFXREAI", lang = language) %>% 
  statgl_fetch(
    "sector"      = px_all(),
    "transaction" = 43,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

udgifter_raw <-
  statgl_url("OFXREAU", lang = language) %>% 
  statgl_fetch(
    "sector"      = px_all(),
    "transaction" = 44,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

indtagter <- 
  indtagter_raw %>% 
  mutate(transaction = transaction %>% str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()) %>% 
  spread(2, 4)

udgifter <- 
  udgifter_raw %>% 
  mutate(transaction = transaction %>% str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()) %>% 
  spread(2, 4)

drift <-
  indtagter %>% 
  left_join(udgifter) %>% 
  gather(transaction, value, -(1:2)) %>% 
  mutate(value = value / 10^6,
         time = time %>% make_date())
  
# Plot
drift %>%
  ggplot(aes(
    x     = time,
    y     = value,
    color = transaction
  )) +
  geom_line(size = 2) +
  facet_wrap(~ sector, scales = "free") +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title = sdg17$figs$fig1$title[language],
    subtitle = " ",
    x = " ",
    y = sdg17$figs$fig1$y_lab[language],
    color = " ",
    caption = sdg17$figs$fig1$cap[language]
  )

Kisitsisaataasivik, isertitat

Kisitsisaataasivik, aningaasartuutit

Periaaseq


# Transform
drift <-
  indtagter %>% 
  left_join(udgifter) %>% 
  gather(transaction, value, -(1:2)) %>% 
  mutate(value = value / 10^6,
         value = round(value, 2)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  spread(3, 4) %>% 
  arrange(desc(time))

# Table
drift %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(drift[[2]]) %>% rev()) %>% 
  add_footnote(sdg17$figs$fig1$foot[language], notation = "symbol")
Ingerlatsinermi aningaasaatiniillu isertitat katillugit Ingerlatsinermut aningaasanullu aningaasartuutit katillugit
2024
Kommunit ingerlataqarfii 7,18 6,82
Namminersornerullutik Oqartussat ingerlataqarfii 8,27 8,13
Naalagaaffiup ingerlataqarfii 1,80 1,80
Pisortat ingerlataqarfii tamarmiusut 14,83 14,28
2023
Kommunit ingerlataqarfii 6,72 7,20
Namminersornerullutik Oqartussat ingerlataqarfii 8,16 7,61
Naalagaaffiup ingerlataqarfii 1,52 1,52
Pisortat ingerlataqarfii tamarmiusut 14,14 14,03
2022
Kommunit ingerlataqarfii 6,57 6,28
Namminersornerullutik Oqartussat ingerlataqarfii 7,92 7,67
Naalagaaffiup ingerlataqarfii 1,35 1,35
Pisortat ingerlataqarfii tamarmiusut 13,60 13,00
2021
Kommunit ingerlataqarfii 6,20 6,13
Namminersornerullutik Oqartussat ingerlataqarfii 7,33 7,31
Naalagaaffiup ingerlataqarfii 1,39 1,39
Pisortat ingerlataqarfii tamarmiusut 12,78 12,67
2020
Kommunit ingerlataqarfii 6,13 6,04
Namminersornerullutik Oqartussat ingerlataqarfii 7,61 7,44
Naalagaaffiup ingerlataqarfii 1,36 1,36
Pisortat ingerlataqarfii tamarmiusut 12,87 12,61
* Koruunit milliardinngorlugit, ingerlatsinermi aningaasaatiniillu isertitat kiisalu aningaasartuutit katillugit.



# Import 
indtagter_raw <-
  statgl_url("OFXREAI", lang = language) %>% 
  statgl_fetch(
    "sector"      = 0,
    "transaction" = 43,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

udgifter_raw <-
  statgl_url("OFXREAU", lang = language) %>% 
  statgl_fetch(
    "sector"      = 0,
    "transaction" = 44,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

bnp_raw <-
  statgl_url("NRX02", lang = language) %>% 
  statgl_fetch(
    "units"        = "L",
    "account name" = "LBNPTOT",
    "time"         = px_all(),
    .col_code      = TRUE) %>% 
  as_tibble()

# Transform
saldo <- 
  bnp_raw %>% 
  select(3, 4) %>% 
  rename("bnp" = 2) %>% 
  left_join(udgifter_raw  %>% select(3, 4) %>% rename("expenditure" = 2)) %>% 
  left_join(indtagter_raw %>% select(3, 4) %>% rename("revenue" = 2)) %>% 
  mutate(saldo = (revenue - expenditure) / bnp * 10^-3,
         time  = time %>% make_date(),
         type  = "saldo")

# Plot
saldo %>% 
  ggplot(aes(
    x    = time,
    y    = saldo,
    fill = type
  )) +
  geom_col() +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 100, 
    accuracy = 1,
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl() +
  theme(legend.position = "None") +
  labs(
    title = sdg17$figs$fig2$title[language],
    subtitle = sdg17$figs$fig2$sub[language],
    x = " ",
    y = sdg17$figs$fig2$y_lab[language],
    color = " ",
    caption = sdg17$figs$fig2$cap[language]
  )

Kisitsisaataasivik, isertitat

Kisitsisaataasivik, aningaasartuutit

Kisitsisaataasivik, BNP

Periaaseq, pisortat aningaasaataat


# transform
  saldo <-
  bnp_raw %>% 
  select(3, 4) %>% 
  rename("bnp" = 2) %>% 
  left_join(udgifter_raw  %>% select(3, 4) %>% rename("expenditure" = 2)) %>% 
  left_join(indtagter_raw %>% select(3, 4) %>% rename("revenue" = 2)) %>% 
  filter(time >= year(Sys.time()) - 7) %>% 
  #arrange(desc(time)) %>% 
  mutate(value = (revenue - expenditure) / bnp * 10^-3 * 100,
         value = round(value, 1),
         time  = time %>% factor(levels = unique(time)),
         saldo = sdg17$figs$fig2$saldo[language]) %>% 
  select(-(2:4)) %>% 
  spread(1, 2)



# table
saldo %>%
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(sdg17$figs$fig2$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Pisortat aningaasaqarneranni killiffik 6 6,2 1,3 0,5 2,7 0,5
* BNP-mi pisortat aningaasaqarneranni killiffik procentinngorlugu akit ingerlaavartut malillugit

Atuisunut akit


GS Atuisunut akit naleqqersuutaat
# Import
PRXPRISV_raw <-
  statgl_url("PRXPRISV", lang = language) %>% 
  statgl_fetch(
      "commodity group" = px_all(),
      "time"            = px_all(),
    .col_code           = TRUE) %>% 
  as_tibble()

# Transform
PRXPRISV <- 
  PRXPRISV_raw %>% 
  mutate(time              = time %>% as.character() %>% readr::parse_date(format = "%Y %b"),
         `commodity group` = `commodity group` %>% factor(levels = unique(`commodity group`)))

# Plot  
cpi <-
  PRXPRISV %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = `commodity group` 
  )) +
  geom_line(linewidth = 1) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = (statgl_url("PRXPRISV", lang = language) %>% statgl_meta())$title,
    subtitle = " ",
    x        = " ",
    y        = sdg17$figs$fig3$y_lab[language],
    color    = sdg17$figs$fig3$color[language],
    caption  = sdg17$figs$fig3$cap[language]
  )
  
plotly::ggplotly(cpi)
Kisitsisaataasivik

Periaaseq


# Import
PRXPRISV_raw <-
  statgl_url("PRXPRISV", lang = language) %>% 
  statgl_fetch(
      "commodity group" = px_all(),
      "time"            = px_top(5),
    .col_code           = TRUE) %>% 
  as_tibble()

# Transform
PRXPRISV <-
  PRXPRISV_raw %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time)),
         `commodity group` = `commodity group` %>% factor(levels = unique(`commodity group`))) %>% 
  spread(2, 3)

# Table
PRXPRISV %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  row_spec(1, bold = TRUE)
2008 jan 2008 jul 2009 jan 2009 jul 2010 jan
Pisiassat kiffartuussinerillu tamaasa 100 103,0 103,5 103,9 105,0
Inuussutissat il.il. 100 105,3 106,0 108,9 111,0
Iffiukkat karrinillu nioqqutissiat 100 107,5 109,5 111,5 109,8
Neqit, neqinik nioqqutissiat 100 106,9 106,5 109,4 110,9
Aalisakkat 100 101,8 101,3 104,8 109,7
Immuk, immuup qalippernera, immussuaq, manniit 100 104,9 104,5 103,8 106,6
Punneq, margariina il.il. 100 104,7 115,7 117,6 122,2
Paarnat 100 105,6 103,2 106,6 105,1
Naatitat 100 109,6 110,0 107,3 111,9
Sukkut mamakujuttut il.il. 100 107,9 108,8 110,1 113,0
Inuussutissat allat 100 108,9 107,7 109,3 110,0
Kaffi, te il.il. 100 101,5 106,4 106,1 107,2
Sodavandi aamma paarnap issera 100 104,1 107,3 114,0 114,4
Imigassat aalakoornartut tupallu 100 104,2 104,2 105,0 105,6
Imigassaq aalakoornartoq 100 104,9 104,9 106,0 107,0
Tupa 100 103,4 103,4 104,0 104,0
Atisat kamippaallu 100 102,6 103,1 100,2 101,8
Inigisaq 100 103,9 104,9 105,1 105,9
Inigisami atortut pissarsiat 100 102,6 102,1 114,3 111,5
Nakorsaatit 100 102,0 102,0 104,4 106,2
Assartuineq 100 102,7 103,7 103,8 104,9
Oqarasuaat, nassiussinerit 100 94,8 94,8 95,0 95,0
Sunngiffik aamma piorsarsimassuseq 100 102,0 101,5 99,0 99,3
Neriniartarfiit akunnittarfiillu 100 99,2 100,5 100,6 101,1
Nioqqutissat sullissinerillu allat 100 100,8 105,0 96,2 98,4
# Import
PRXPRISH_raw <-
  statgl_url("PRXPRISH", lang = language) %>%
  statgl_fetch(
      "time"  = px_all(),
      "type"  = 0,
    .col_code = TRUE) %>% 
  as_tibble()



time <- statgl_url("PRXPRISH", lang = "en") %>%
  statgl_fetch(
      "time"  = px_all()) %>% 
  select(time_eng = time)

fig_title <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title %>% str_split(", "))[2]
fig_sub   <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title %>% str_split(", "))[1]

# Transform
PRXPRISH <-
  PRXPRISH_raw %>% 
  cbind(time) %>% 
  mutate(time = time_eng %>% parse_date(format = "%Y %B")) %>% 
  select(-time_eng)


fig_title <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title |> str_split(" "))[1]
fig_sub   <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$variable)[[226]]

# Plot
PRXPRISH %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = type
  )) +
  geom_line(size = 2) +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 1, 
    accuracy = 1, 
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = fig_title,
    subtitle = fig_sub,
    x        = " ",
    y        = " ",
    caption  = sdg17$figs$fig4$cap[language]
  ) 

Kisitsisaataasivik

Periaaseq


# Import
PRXPRISH_raw <-
  statgl_url("PRXPRISH", lang = language) %>%
  statgl_fetch(
      "time"  = px_top(5),
      "type"  = 0,
    .col_code = TRUE) %>% 
  as_tibble()

# Transform
PRXPRISH <-
  PRXPRISH_raw %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(1, ncol(.))

PRXPRISH %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(fig_title, notation = "symbol")
1971 januaarimi 1971 juulimi 1972 januaarimi 1972 juulimi 1973 januaarimi
Qaammatini 12-ni ingerlaavartumik procentip allanngortarnera NA NA 5,7 6,3 7,7
* Atuisunut

Pilersuinerup oqimaaqatigiinnera


GS Pilersuinerup oqimaaqatigiinnera
# Import
NRX11_raw <-
  statgl_url("NRX11", lang = language) %>% 
  statgl_fetch(
      "units"   = "K",
      "account" = px_all(),
      "time"    = px_all(),
    .col_code   = TRUE) %>% 
  as_tibble()

var <- unique(NRX11_raw[[2]])
vec <- c(var[1], var[4], var[5], var[6], var[7], var[2])

# Transform
NRX11 <-
  NRX11_raw %>% 
  filter(account %in% vec) %>% 
  mutate(account = account %>% factor(levels = unique(vec)),
         time    = time    %>% make_date()) %>% 
  arrange(account, time) %>% 
  group_by(account) %>% 
  mutate(pct = (value - lag(value)) / lag(value)) %>% 
  ungroup()

# Plot
NRX11 %>% 
  ggplot(aes(
    x     = time,
    y     = pct,
    color = account
  )) +
  geom_line(size = 2) +
  geom_hline(yintercept = 0, linetype = "dashed") + 
  facet_wrap(~ account, scales = "free") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = sdg17$figs$fig5$title[language],
    subtitle = NRX11[[1]][1],
    x        = " ",
    y        = sdg17$figs$fig5$y_lab[language],
    color    = " ",
    caption  = sdg17$figs$fig5$cap[language]
  )

Kisitsisaataasivik


# Transform
NRX11 <-
  NRX11_raw %>% 
  filter(account %in% vec) %>% 
  mutate(account = account %>% factor(levels = unique(vec))) %>% 
  arrange(account, time) %>% 
  group_by(account) %>% 
  mutate(pct = (value - lag(value)) / lag(value) * 100,
         pct = round(pct, 1)) %>% 
  ungroup() %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  select(-4) %>% 
  spread(3, 4)

# Table
NRX11 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(sdg17$figs$fig5$index[language], 1, length(NRX11[[2]])) %>% 
  add_footnote(NRX11[[1]][1], notation = "symbol")
2020 2021 2022 2023
Ukiumut allannguut procentinngorlugu
Tunisassiat ataatsimut nalingat 0,3 1,6 2,0 0,9
Inuinnaat atuinerat -0,3 3,2 0,6 0,1
Pisortat atuinerat -2,9 2,3 -1,7 2,2
Tamakkiisumik aningaasaliinerit 7,0 13,7 1,8 -3,6
Nioqqutissanik kiffartuussinernillu avammut tunisat -4,0 -6,0 13,9 3,0
Nioqqutissanik kiffartuussinernillu avataaniit pisiat -2,1 6,0 5,7 -0,1
* Akiusimasunit kisitat (2010-imi akit)

Pisortat atuinerat aamma naalagaaffimmit tapiissutit il.il.


GS Pisortat atuinerat aamma naalagaaffimmit tapiissutit il.il.
# Import 
NRD11_raw <- 
  statgl_url("NRX11", lang = language) %>% 
  statgl_fetch(
    units   = "L",
    account = c("0000", "3200"),
    time    = px_all(),
    .col_code   = TRUE
  ) %>% 
  as_tibble()

OFXREAI_raw <- 
  statgl_url("OFXREAI", lang = language) %>% 
  statgl_fetch(
    sector      = c(0),
    transaction = c(27),
    time        = px_all(),
    .col_code   = TRUE
  ) %>% 
  as_tibble()

# Transform
bnp <- 
  NRD11_raw %>% 
  mutate(account = account %>% factor(levels = unique(account))) %>% 
  spread(account, value) %>% 
  left_join(OFXREAI_raw %>%
              mutate(
                transaction = transaction %>% 
                  trimws() %>% 
                  str_remove_all("[:digit:]") %>% 
                  str_remove("...") %>%
                  trimws(),
                value = value / 1000
                ) %>% 
              spread(transaction, value) %>% 
              select(-1)
            )
  
labels     <- bnp %>% colnames()
vec        <- 1:length(labels)
names(vec) <- labels

bnp_relativ <-
  bnp %>% 
  rename(
    Y = 3,
    O = 4,
    B = 5
  ) %>% 
  mutate(
    O = O / Y * 100,
    B = B / Y * 100
  ) %>% rename(vec) %>% 
  select(-3) %>% 
  gather(key, value, -units, -time) %>% 
  mutate(time = time %>% as.numeric(),
         key  = key %>% factor(levels = unique(key)))


sub_lab <- 
  bnp_relativ %>% 
  select(1) %>% 
  separate(units, c("units", "drop"), ",") %>% 
  pull(units) %>% 
  unique()


# Plot
bnp_relativ %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    fill  = key
  )) +
  geom_col(size = 2) +
  facet_wrap(~ key, scales = "free", ncol = 1) +
  theme_statgl() + 
  theme(legend.position = "none") +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 1
  )) +
  scale_fill_statgl() +
  labs(
    title    = sdg17$figs$fig6$title[language],
    subtitle = sub_lab,
    y        = " ",
    x        = " ",
    caption  = sdg17$figs$fig6$cap[language]
  )

Kisitsisaataasivik


# Table
tab <- 
  bnp_relativ %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 7) %>% 
  mutate(
    time = time %>% factor(levels = unique(time)),
    value = value %>% round(1)
    ) %>% 
  spread(time, value)

foot_lab <- 
  tab %>% 
  select(1) %>% 
  separate(units, c("units", "drop"), ",") %>% 
  pull(units) %>%
  table()

tab %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = foot_lab) %>% 
  add_footnote(sdg17$figs$fig6$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Akit ingerlaavartut
Pisortat atuinerat 43,1 43,8 43,6 44,3 41,3 41,7
Ataatsimoortumik tapiissutit 19,9 19,3 19,4 19,0 17,9 18,1
* BNP-mut naleqqiullugu procentinngornera

Internetti sukkanerusoq


GS Internetti sukkanerusoq
# Import 
time  <- seq(2018, 2020)
value <- c(80, 92.6, 92.6) 
type  <- "internet"

title   <- sdg17$figs$fig7$title[language]
caption <- sdg17$figs$fig7$cap[language]
unit    <- sdg17$figs$fig7$unit[language]


# Plot
data.frame(time, value, type) %>% 
  as_tibble() %>% 
  ggplot(aes(
    x = time, 
    y = value,
    fill = type
    )) + 
  geom_col() +
  expand_limits(y = 100) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  scale_fill_statgl() +
  theme_statgl() + 
  theme(legend.position = "none") +
  labs(
    title    = title,
    subtitle = unit,
    x        = " ",
    y        = " ",
    caption  = caption
  )




# Table 
value <- c("80%", "92.6%", "92.6%") 

data.frame(time, value) %>% 
  as_tibble() %>% 
  mutate(col = title) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table()
2018 2019 2020
Internettimik sukkanerusumik atuisinnaanermut periarfissaqarneq 80% 92.6% 92.6%