Utertiguk


Anguniagaq 16: Eqqissineq, naapertuilluarneq sullissiviillu qajannaatsut

Inunnut ataasiakkaanut ulorianarluinnartumik pinerluttuliortarneq


FN 16.10.1 Toqutsinermi timimillu pinerliinermi unnerluussinerit
# Import
KRDAN1 <- 
  statgl_url("KRXAN1", lang = language) |> 
  statgl_fetch(
    `type of offence` = c("4", "20", "19", "2", "21", "1"),
    time = px_top(10),
    .col_code = T
  ) |> 
  as_tibble() |> 
  drop_na()

# Plot
KRDAN1 |> 
  ggplot(aes(
    x = time,
    y = value,
    fill = `type of offence`
  )) + 
  geom_col() + 
  theme_statgl() +
  scale_fill_statgl(reverse = T, guide = guide_legend(nrow = 3, reverse = T)) +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  labs(
    title = sdg16$figs$fig1$title[language],
    x = " ",
    y = colnames(KRDAN1)[1],
    fill = " ",
    caption = sdg16$figs$fig1$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
KRDAN1 <- 
  KRDAN1 |> 
  filter(time >= year(Sys.time()) - 5) |> 
  rename("Overtrædelsens art" = 1) |> 
  spread(time, value)

# Table
KRDAN1 |> 
  statgl_table()
Overtrædelsens art 2021 2022 2023 2024
Angerlarsimafimmi eqqissiviilliortitsineq 46 56 45 32
Inuunermik, peqqissutsimik, atugarissaarnermilu ajoqusiinissamik siorasaarineq 211 259 236 189
Nakuuserneq 1.454 1.170 1.276 1.072
Pinerluttulerinermut inatsimmi allat 104 96 107 97
Toqutseriarneq 10 12 27 21
Toqutsineq 3 10 6 6

Kinguaassiuutitigut kannguttaatsuliornerit


FN 16.2.3 Arnat angutillu 18-it 29-llu akornanni ukiullit 18-iliinnginnermi kinguaassiuutitigut pinerluttuliorfigineqarsimasut annertussusaat
# Import
SIF_raw <-
  data.frame(overgreb = c(32.8, 32.8, 27.0),
             tid = c("2005-2010", "2014", "2018")) %>%
  as_tibble()

# Transform
SIF <-
  SIF_raw %>%
  rename(`Andel 18-29-årige, der har vøret udsat for seksuelle overgreb inden 18-årsalderen` = overgreb) %>%
  gather(indikatorer, værdi, -tid)

# Plot
SIF_overgreb_plot <-
  SIF %>%
  mutate(tid = as.character(tid)) %>% 
  ggplot(aes(x = tid, y = værdi, fill = indikatorer)) +
  geom_col() +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  theme_statgl() + scale_fill_statgl(reverse = TRUE) +
  theme(legend.position = "None") +
  labs(
    title = sdg16$figs$fig2$title[language],
    x = " ",
    y = " ",
    caption = sdg16$figs$fig2$cap[language]
  )

SIF_overgreb_plot

Befolkningsundersøgelse


# Import
SIF_raw <-
  data.frame(overgreb = c(32.8, 32.8, 27.0),
             tid = c("2005-2010", "2014", "2018")) %>%
  as_tibble()

# Transform
SIF <-
  SIF_raw %>%
  rename(`Andel 18-29-årige, der har været udsat for seksuelle overgreb inden 18-årsalderen` = overgreb) %>%
  gather(indikatorer, værdi, -tid)

# Table
SIF_overgreb_table <-
  SIF %>%
  mutate(værdi = format(værdi, digits = 3, decimal.mark = ",")) %>%
  spread(tid, værdi) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrrrrrrrrrrrrrrrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = FALSE) %>%
  add_footnote(
    sdg16$figs$fig2$foot[language],
    notation = "symbol"
  )

SIF_overgreb_table
Indikatorer 2005-2010 2014 2018
Andel 18-29-årige, der har været udsat for seksuelle overgreb inden 18-årsalderen 32,8 32,8 27,0
* 18-iniit 29-nut ukiullit 18-iliinnginnerminni kinguaassiuutitigut kannguttaatsuliorfigineqarsimasut annertussusaat procentinngorlugit.

Toqutsineq


FN 16.1.1 Piaarinaatsoornerunngitsumik toqutaasimasut amerlassusaat, suiaassuseq malillugu
# Import
SUDLDM3_raw <- 
  read_csv(
    paste0("https://bank.stat.gl:443/sq/50013c7c-14d5-4d6a-96e0-df61cb3044f3", "?lang=", language),
    locale = locale(encoding = "latin1")
  )

# Transform
SUDLDM3 <- 
  SUDLDM3_raw %>% 
  rename(
    "causes" = 1,
    "sex"    = 2,
    "time"   = 3,
    "value"  = 4
  )

# Plot
SUDLDM3 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = sex
  )) +
  geom_col() +
  theme_statgl() + scale_fill_statgl(reverse = TRUE) +
  scale_y_continuous(breaks = c(0, 2, 4, 6, 8, 10)) +
  labs(
    title = SUDLDM3[[1]][1],
    y = sdg16$figs$fig3$y_lab[language],
    fill = " ",
    x = " ",
    caption = sdg16$figs$fig3$cap[language]
  )

Kisitsisaataasivik


# Transform
SUDLDM3 <- 
  SUDLDM3_raw %>% 
  rename(
    "causes" = 1,
    "sex"    = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  spread(2, 4) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  arrange(desc(time))

SUDLDM3 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(year_col = " ") %>% 
  pack_rows(index = table(SUDLDM3[[1]])) %>% 
  add_footnote(sdg16$figs$fig3$foot[language], notation = "symbol")
Angutit Arnat
Toqutsinerit/saassussinerit
2023 0 1
2022 5 1
2021 2 1
* Inuit amerlassusaat

Toqqissisimaneq pillugu politiit misissuinerat


GS Toqqissisimaneq pillugu politiit misissuinerannit inernerit
# Import
police1_raw <-
  data.frame(
    Tryg = c(82.9, 81.6),
    hverken = c(5.5, 7.3),
    Utryg = c(10.1, 10.4),
    ved_ikke = c(1.5, 0.7),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police1 <-
  police1_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent, -tid) %>% 
  mutate(tid = as.factor(tid))
  
# Plot
police1_plot <-
  police1 %>%
  ggplot(aes(x = svar,
             y = procent,
             fill = tid)) +
  geom_col(position = "dodge2") +
  expand_limits(y = 100) +
  theme_statgl() + scale_fill_statgl() +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  labs(
    title = sdg16$figs$fig4$title[language],
    x = " ",
    y = " ",
    fill = " ",
    caption = sdg16$figs$fig4$cap[language]
  )

police1_plot

Toqqissisimaneq pillugu misissuineq


# Import
police1_raw <-
  data.frame(
    Tryg = c(82.9, 81.6),
    hverken = c(5.5, 7.3),
    Utryg = c(10.1, 10.4),
    ved_ikke = c(1.5, 0.7),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police1 <-
  police1_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent,-tid)

# Table
police1_table <-
  police1 %>%
  mutate(procent = format(procent, digits = 3, decimal.mark = ",")) %>%
  spread(tid, procent) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = TRUE) %>%
  add_footnote(sdg16$figs$fig4$foot[language],
               notation = "symbol")

police1_table
Svar 2018 2019
Hverken/eller 5,5 7,3
Tryg 82,9 81,6
Utryg 10,1 10,4
Ved ikke/ ønsker ikke at svare 1,5 0,7
* Procentinngorlugu, Kalaallit Nunaanni innuttaasut toqqissisimanerat.


Apeqqut: 1-7-imut eqqarsaatigigukku, tassani 1 isumaqarpoq ‘najugaqarfinni najugaqarnera eqqissisimalluinnartumik misigiffigaara’ 7-ilu ‘najugaqarfinni najugaqarneq toqqissisimananngilaq’, taava qanoq toqqissisimatigaat? Najugaqarfiit tassaavoq angerlarsimaffiit eqqaamiusilu. Titartakkami akissutit eqimattakkuutaarlugit takutinneqarput, 1-3-mik akisimasut tassaapput najugaqarfimminni toqqissisimallutik inuusut, 4-imik akisimasut tassaapput najugaqarfimminni eqqissisinngillat aamma toqqissisimannginnermik misigisimanngillat, 5-7-imillu akisimasut tassaapput najugaqarfimminni toqqissisimanngitsut.

Malugiuk: Kisitsisinik paasissutissiornermi nalornissutit isigissanngikkaani innuttaasut najukkaminni toqqissisimasut amerlassusaat taamaaginnarput.



# Import
police4_raw <-
  data.frame(
    Tryg = c(92.0, 86.8),
    hverken = c(1.5, 4.7),
    Utryg = c(4.4, 7.2),
    ved_ikke = c(2.2, 1.4),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police4 <-
  police4_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent,-tid) %>% 
  mutate(tid = as.factor(tid))

# Plot
police4_plot <-
  police4 %>%
  ggplot(aes(x = svar,
             y = procent,
             fill = tid)) +
  geom_col(position = "dodge2") +
  theme_statgl() + scale_fill_statgl() +
  expand_limits(y = 100) +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  labs(
    title = sdg16$figs$fig5$title[language],
    x = " ",
    y = " ",
    fill = " ",
    caption = sdg16$figs$fig5$cap[language]
  )

police4_plot

Toqqissisimaneq pillugu misissuineq


# Import
police4_raw <-
  data.frame(
    Tryg = c(92.0, 86.8),
    hverken = c(1.5, 4.7),
    Utryg = c(4.4, 7.2),
    ved_ikke = c(2.2, 1.4),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police4 <-
  police4_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent,-tid)

# Table
police4_table <-
  police4 %>%
  mutate(procent = format(procent, digits = 3, decimal.mark = ",")) %>%
  spread(tid, procent) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = TRUE) %>%
  add_footnote(
    sdg16$figs$fig5$foot[language],
    notation = "symbol"
  )

police4_table
Svar 2018 2019
Hverken/eller 1,5 4,7
Tryg 92,0 86,8
Utryg 4,4 7,2
Ved ikke/ ønsker ikke at svare 2,2 1,4
* Procentinngorlugu, inoqarfinni politeeqarfeqanngitsuni innuttaasut toqqissisimanerat.


Apeqqut: 1-7-imut eqqarsaatigigukku, tassani 1 isumaqarpoq ‘najugaqarfinni najugaqarnera eqqissisimalluinnartumik misigiffigaara’ 7-ilu ‘najugaqarfinni najugaqarneq toqqissisimananngilaq’, taava qanoq toqqissisimatigaat? Najugaqarfiit tassaavoq angerlarsimaffiit eqqaamiusilu. Titartakkami akissutit eqimattakkuutaarlugit takutinneqarput, 1-3-mik akisimasut tassaapput najugaqarfimminni toqqissisimallutik inuusut, 4-imik akisimasut tassaapput najugaqarfimminni eqqissisinngillat aamma toqqissisimannginnermik misigisimanngillat, 5-7-imillu akisimasut tassaapput najugaqarfimminni toqqissisimanngitsut.

Malugiuk: Kisitsisinik paasissutissiornermi nalornissutit isigissanngikkaani innuttaasut najukkaminni toqqissisimasut amerlassusaat ikilisimapput.



# Import
police5_raw <-
  data.frame(
    tillid = c(85.0, 89.3),
    ikke_tillid = c(12.5, 7.7),
    ved_ikke = c(2.5, 3.0),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police5 <-
  police5_raw %>%
  rename(
    `Tillid til politiet` = tillid,
    `Ikke tillid til politiet` = ikke_tillid,
    `Ved ikke/ ønsker ikke at svare` = ved_ikke
  ) %>%
  gather(svar, procent,-tid) %>% 
  mutate(tid = as.factor(tid))

# Plot
police5_plot <-
  police5 %>%
  ggplot(aes(x = svar,
             y = procent,
             fill = tid)) +
  geom_col(position = "dodge2") +
  theme_statgl() + scale_fill_statgl() +
  expand_limits(y = 100) +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  labs(
    title = sdg16$figs$fig6$title[language],
    x = " ",
    y = " ",
    fill = " ",
    caption = sdg16$figs$fig6$cap[language]
  )

police5_plot

Toqqissisimaneq pillugu misissuineq


# Import
police5_raw <-
  data.frame(
    tillid = c(85.0, 89.3),
    ikke_tillid = c(12.5, 7.7),
    ved_ikke = c(2.5, 3.0),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police5 <-
  police5_raw %>%
  rename(
    `Tillid til politiet` = tillid,
    `Ikke tillid til politiet` = ikke_tillid,
    `Ved ikke/ ønsker ikke at svare` = ved_ikke
  ) %>%
  gather(svar, procent, -tid)

# Table
police5_table <-
  police5 %>%
  mutate(procent = format(procent, digits = 3, decimal.mark = ",")) %>%
  spread(tid, procent) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = TRUE) %>%
  add_footnote(sdg16$figs$fig6$foot[language],
               notation = "symbol")

police5_table
Svar 2018 2019
Ikke tillid til politiet 12,5 7,7
Tillid til politiet 85,0 89,3
Ved ikke/ ønsker ikke at svare 2,5 3,0
* Procentinngorlugu, Kalaallit Nunaanni innuttaasut politiinut tatiginninnerat.


Apeqqut: Oqaaseqaammi uani isumaqataavit? Ikiorneqarnissannik pisariaqartitsissagaluaruma politiit tatigaakka. Titartakkami innuttaasut politiinut tatiginninnermut apeqqummut angersimasut kiisalu naameersimasut immikkoortinneqarput.

Maluigiuk: Kisitsisinik paasissutissiornermi nalornissutit isigissanngikkaani, innuttaasut politiinut tatiginninnerat annertunerulersimavoq. Sanilliussinermili ukiuni pineqartuni marlunni apeqqutip sammisani assigiinngitsuni apequtigineqarsimasinnaanera eqqumaffigineqassaaq.

Taasinerit procentinngorlugit


GS Taasinerit procentinngorlugit
# Import
SAXLANST_raw <- 
  statgl_url("SAXLANST", lang = language) %>%
  statgl_fetch(
    "constituencies" = c(0),
    "votes cast"     = c(16, 20),
    .col_code        = TRUE
  ) %>% 
  as_tibble()

# Transform
SAXLANST <- 
  SAXLANST_raw %>% 
  separate(time, c("day", "month", "year")) %>% 
  select(-c("day", "month")) %>% 
  mutate(
    year = year %>% as.numeric(),
    year = year + 1900,
    plus = case_when(
      year < 1950 ~ 100, 
      year > 1950 ~ 0),
    year = year + plus,
    `votes cast` = `votes cast` %>% fct_reorder(value, sum)
  ) %>% 
  select(-ncol(.)) %>% 
  spread(3, 4) %>% 
  rename(
    valid = 3,
    total = 4
  ) %>% 
  mutate(
    vote = valid / total * 100,
    mean = mean(vote)
  )

# Plot
SAXLANST %>% 
  ggplot(aes(
    x = year,
    y = vote
  )) +
  geom_point(size = 2) +
  geom_segment(aes(
    x = year,
    xend = year,
    y = 0,
    yend = vote
  )) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl() +
  expand_limits(y = 0) +
  expand_limits(y = 100) +
  geom_hline(
    size = 15,
    alpha = 0.1, 
    color = "green",
    yintercept = SAXLANST[["mean"]][1]
    ) +
  labs(
    title    = sdg16$figs$fig9$title[language],
    subtitle = SAXLANST[[2]][1],
    y        = " ",
    x        = " ",
    caption  = sdg16$figs$fig9$cap[language]
    )

Kisitsisaataasivik


# Table
SAXLANST %>% 
  select(year, vote) %>% 
  #arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 20) %>% 
  mutate(
    year = year %>% factor(levels = unique(year)),
    vote = vote %>% round(1)
  ) %>% 
  spread(year, vote) %>% 
  statgl_table() %>% 
  add_footnote(sdg16$figs$fig9$foot[language], notation = "symbol")
2009 2013 2014 2018 2021
72,6 73,3 72,2 71,1 64,5
* Taasinerit procentinngorlugit, Inatsisartunut qinersineq
# Import
SAXKOMST_raw <- 
  statgl_url("SAXKOMST", lang = language) %>% 
  statgl_fetch(
    municipality = c(0),
    "votes cast" = c(15, 19),
    .col_code    = TRUE
  ) %>% 
  as_tibble()

# Transform
SAXKOMST <- 
  SAXKOMST_raw %>% 
  separate(time, c("day", "month", "year")) %>% 
  select(-c("day", "month")) %>% 
  mutate(
    year = year %>% as.numeric(),
    year = year + 1900,
    plus = case_when(
      year < 1950 ~ 100, 
      year > 1950 ~ 0),
    year = year + plus,
    `votes cast` = `votes cast` %>% fct_reorder(value, sum)
    ) %>% 
  select(-ncol(.)) %>% 
  spread(3, 4) %>% 
  rename(
    valid = 3,
    total = 4
  ) %>% 
  mutate(
    vote = valid / total * 100,
    mean = mean(vote)
    )

# Plot
SAXKOMST %>% 
  ggplot(aes(
    x = year,
    y = vote
  )) +
  geom_point(size = 2) +
  geom_segment(aes(
    x = year,
    xend = year,
    y = 0,
    yend = vote
  )) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl() +
  expand_limits(y = 0) +
  expand_limits(y = 100) +
  geom_hline(
    size       = 15,
    alpha      = 0.1, 
    color      = "red",
    yintercept = SAXKOMST[["mean"]][1],
    ) +
  labs(
    title    = sdg16$figs$fig8$title[language],
    subtitle = SAXKOMST[[2]][1],
    y        = " ",
    x        = " ",
    caption  = sdg16$figs$fig8$cap[language]
    )

Kisitsisaataasivik


# Table
SAXKOMST %>% 
  select(year, vote) %>% 
  #arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 20) %>% 
  mutate(
    year = year %>% factor(levels = unique(year)),
    vote = vote %>% round(1)
  ) %>% 
  spread(year, vote) %>% 
  statgl_table() %>% 
  add_footnote(sdg16$figs$fig8$foot[language], notation = "symbol")
2008 2013 2017 2021
61,2 57,6 60,1 62,6
* Taasinerit procentinngorlugit, Kommunimut qinersineq
# Import
SAXFOLK_raw <- 
  statgl_url("SAXFOLK", lang = language) %>% 
  statgl_fetch(
    municipality = c(0),
    "votes cast" = c(12, 16),
    .col_code    = TRUE
    ) %>% 
    as_tibble()

# Transform
SAXFOLK <- 
  SAXFOLK_raw %>% 
  separate(time, c("day", "month", "year")) %>% 
  select(-c("day", "month")) %>% 
  mutate(
    year = year %>% as.numeric(),
    year = year + 1900,
    plus = case_when(
      year < 1980 ~ 100, 
      year > 1980 ~ 0
      ),
    year = year + plus,
    `votes cast` = `votes cast` %>% fct_reorder(value, sum)) %>% 
  select(-ncol(.)) %>% 
  spread(3, 4) %>% 
  rename(
    valid = 3,
    total = 4
  ) %>% 
  mutate(vote = valid / total * 100,
         mean = mean(vote))

# Plot
SAXFOLK %>% 
  ggplot(aes(
    x = year,
    y = vote
  )) +
  geom_point(size = 2) +
  geom_segment(aes(
    x = year,
    xend = year,
    y = 0,
    yend = vote
  )) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl() +
  expand_limits(y = 0) +
  expand_limits(y = 100) +
  geom_hline(
    size = 15,
    alpha = 0.1,
    color = "blue",
    yintercept = SAXFOLK[["mean"]][1]
    ) +
  labs(
    title    = sdg16$figs$fig7$title[language],
    subtitle = SAXFOLK[[2]][1],
    y        = " ",
    x        = " ",
    caption  = sdg16$figs$fig7$cap[language]
    )

Kisitsisaataasivik


# Table
SAXFOLK %>% 
  select(year, vote) %>% 
  #arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 20) %>% 
  mutate(
    year = year %>% factor(levels = unique(year)),
    vote = vote %>% round(1)
    ) %>% 
  spread(year, vote) %>% 
  statgl_table() %>% 
  add_footnote(sdg16$figs$fig7$foot[language], notation = "symbol")
2007 2011 2015 2019 2022
63,2 55 49,2 48,4 46,6
* Taasinerit procentinngorlugit, Folketing-imut qinersineq