Utertiguk


Anguniagaq 16: Eqqissineq, naapertuilluarneq sullissiviillu qajannaatsut

Inunnut ataasiakkaanut ulorianarluinnartumik pinerluttuliortarneq


FN 16.10.1 Toqutsinermi timimillu pinerliinermi unnerluussinerit
# Import
KRDAN1_raw <- 
  statgl_url("KRXAN1", lang = language) |> 
  statgl_fetch(
    station = px_all(),
    `type of offence` = px_all(),
    time = px_top(10),
    .col_code = T
  ) |> 
  as_tibble() |> 
  drop_na()
# Transform
KRDAN1 <- 
  KRDAN1_raw |> 
  filter(`type of offence` %in% c("Vold", "Trussel på livet", "Husfredskrænkelse", "Forsøg på manddrab", "Kriminallov andet", "Manddrab")) |> 
  summarise(value = sum(value), .by = c(`type of offence`, time))

# Plot
KRDAN1 |> 
  ggplot(aes(
    x = time,
    y = value,
    fill = `type of offence`
  )) + 
  geom_col() + 
  theme_statgl() +
  scale_fill_statgl(reverse = T, guide = guide_legend(nrow = 3, reverse = T)) +
  theme(plot.margin = margin(10, 10, 10, 10)) +
  labs(
    title = sdg16$figs$fig1$title[language],
    x = " ",
    y = colnames(KRDAN1_raw)[1],
    fill = " ",
    caption = sdg16$figs$fig1$cap[language]
  )

Kisitsisaataasivik

Periaaseq


# Transform
KRDAN1 <- 
  KRDAN1_raw |> 
  filter(time >= year(Sys.time()) - 5 & `type of offence` %in% c("Vold", "Trussel på livet", "Husfredskrænkelse", "Forsøg på manddrab", "Kriminallov andet", "Manddrab")) |> 
  summarise(value = sum(value), .by = c(`type of offence`, time)) |> 
  rename("Overtrædelsens art" = 1) |> 
  spread(time, value)

# Table
KRDAN1 |> 
  statgl_table()
Overtrædelsens art
NA
:——————

Kinguaassiuutitigut kannguttaatsuliornerit


FN 16.2.3 Arnat angutillu 18-it 29-llu akornanni ukiullit 18-iliinnginnermi kinguaassiuutitigut pinerluttuliorfigineqarsimasut annertussusaat
# Import
SIF_raw <-
  data.frame(overgreb = c(32.8, 32.8, 27.0),
             tid = c("2005-2010", "2014", "2018")) %>%
  as_tibble()

# Transform
SIF <-
  SIF_raw %>%
  rename(`Andel 18-29-årige, der har vøret udsat for seksuelle overgreb inden 18-årsalderen` = overgreb) %>%
  gather(indikatorer, værdi, -tid)

# Plot
SIF_overgreb_plot <-
  SIF %>%
  mutate(tid = as.character(tid)) %>% 
  ggplot(aes(x = tid, y = værdi, fill = indikatorer)) +
  geom_col() +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  theme_statgl() + scale_fill_statgl(reverse = TRUE) +
  theme(legend.position = "None") +
  labs(
    title = sdg16$figs$fig2$title[language],
    x = " ",
    y = " ",
    caption = sdg16$figs$fig2$cap[language]
  )

SIF_overgreb_plot

Befolkningsundersøgelse


# Import
SIF_raw <-
  data.frame(overgreb = c(32.8, 32.8, 27.0),
             tid = c("2005-2010", "2014", "2018")) %>%
  as_tibble()

# Transform
SIF <-
  SIF_raw %>%
  rename(`Andel 18-29-årige, der har været udsat for seksuelle overgreb inden 18-årsalderen` = overgreb) %>%
  gather(indikatorer, værdi, -tid)

# Table
SIF_overgreb_table <-
  SIF %>%
  mutate(værdi = format(værdi, digits = 3, decimal.mark = ",")) %>%
  spread(tid, værdi) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrrrrrrrrrrrrrrrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = FALSE) %>%
  add_footnote(
    sdg16$figs$fig2$foot[language],
    notation = "symbol"
  )

SIF_overgreb_table
Indikatorer 2005-2010 2014 2018
Andel 18-29-årige, der har været udsat for seksuelle overgreb inden 18-årsalderen 32,8 32,8 27,0
* 18-iniit 29-nut ukiullit 18-iliinnginnerminni kinguaassiuutitigut kannguttaatsuliorfigineqarsimasut annertussusaat procentinngorlugit.

Toqutsineq


FN 16.1.1 Piaarinaatsoornerunngitsumik toqutaasimasut amerlassusaat, suiaassuseq malillugu
# Import
SUDLDM3_raw <- 
  read_csv(
    paste0("https://bank.stat.gl:443/sq/50013c7c-14d5-4d6a-96e0-df61cb3044f3", "?lang=", language),
    locale = locale(encoding = "latin1")
  )

# Transform
SUDLDM3 <- 
  SUDLDM3_raw %>% 
  rename(
    "causes" = 1,
    "sex"    = 2,
    "time"   = 3,
    "value"  = 4
  )

# Plot
SUDLDM3 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = sex
  )) +
  geom_col() +
  theme_statgl() + scale_fill_statgl(reverse = TRUE) +
  scale_y_continuous(breaks = c(0, 2, 4, 6, 8, 10)) +
  labs(
    title = SUDLDM3[[1]][1],
    y = sdg16$figs$fig3$y_lab[language],
    fill = " ",
    x = " ",
    caption = sdg16$figs$fig3$cap[language]
  )

Kisitsisaataasivik


# Transform
SUDLDM3 <- 
  SUDLDM3_raw %>% 
  rename(
    "causes" = 1,
    "sex"    = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  spread(2, 4) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  arrange(desc(time))

SUDLDM3 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(year_col = " ") %>% 
  pack_rows(index = table(SUDLDM3[[1]])) %>% 
  add_footnote(sdg16$figs$fig3$foot[language], notation = "symbol")
Angutit Arnat
Toqutsinerit/saassussinerit
2023 0 1
2022 5 1
2021 2 1
2020 2 3
* Inuit amerlassusaat

Toqqissisimaneq pillugu politiit misissuinerat


GS Toqqissisimaneq pillugu politiit misissuinerannit inernerit
# Import
police1_raw <-
  data.frame(
    Tryg = c(82.9, 81.6),
    hverken = c(5.5, 7.3),
    Utryg = c(10.1, 10.4),
    ved_ikke = c(1.5, 0.7),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police1 <-
  police1_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent, -tid) %>% 
  mutate(tid = as.factor(tid))
  
# Plot
police1_plot <-
  police1 %>%
  ggplot(aes(x = svar,
             y = procent,
             fill = tid)) +
  geom_col(position = "dodge2") +
  expand_limits(y = 100) +
  theme_statgl() + scale_fill_statgl() +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  labs(
    title = sdg16$figs$fig4$title[language],
    x = " ",
    y = " ",
    fill = " ",
    caption = sdg16$figs$fig4$cap[language]
  )

police1_plot

Toqqissisimaneq pillugu misissuineq


# Import
police1_raw <-
  data.frame(
    Tryg = c(82.9, 81.6),
    hverken = c(5.5, 7.3),
    Utryg = c(10.1, 10.4),
    ved_ikke = c(1.5, 0.7),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police1 <-
  police1_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent,-tid)

# Table
police1_table <-
  police1 %>%
  mutate(procent = format(procent, digits = 3, decimal.mark = ",")) %>%
  spread(tid, procent) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = TRUE) %>%
  add_footnote(sdg16$figs$fig4$foot[language],
               notation = "symbol")

police1_table
Svar 2018 2019
Hverken/eller 5,5 7,3
Tryg 82,9 81,6
Utryg 10,1 10,4
Ved ikke/ ønsker ikke at svare 1,5 0,7
* Procentinngorlugu, Kalaallit Nunaanni innuttaasut toqqissisimanerat.


Apeqqut: 1-7-imut eqqarsaatigigukku, tassani 1 isumaqarpoq ‘najugaqarfinni najugaqarnera eqqissisimalluinnartumik misigiffigaara’ 7-ilu ‘najugaqarfinni najugaqarneq toqqissisimananngilaq’, taava qanoq toqqissisimatigaat? Najugaqarfiit tassaavoq angerlarsimaffiit eqqaamiusilu. Titartakkami akissutit eqimattakkuutaarlugit takutinneqarput, 1-3-mik akisimasut tassaapput najugaqarfimminni toqqissisimallutik inuusut, 4-imik akisimasut tassaapput najugaqarfimminni eqqissisinngillat aamma toqqissisimannginnermik misigisimanngillat, 5-7-imillu akisimasut tassaapput najugaqarfimminni toqqissisimanngitsut.

Malugiuk: Kisitsisinik paasissutissiornermi nalornissutit isigissanngikkaani innuttaasut najukkaminni toqqissisimasut amerlassusaat taamaaginnarput.



# Import
police4_raw <-
  data.frame(
    Tryg = c(92.0, 86.8),
    hverken = c(1.5, 4.7),
    Utryg = c(4.4, 7.2),
    ved_ikke = c(2.2, 1.4),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police4 <-
  police4_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent,-tid) %>% 
  mutate(tid = as.factor(tid))

# Plot
police4_plot <-
  police4 %>%
  ggplot(aes(x = svar,
             y = procent,
             fill = tid)) +
  geom_col(position = "dodge2") +
  theme_statgl() + scale_fill_statgl() +
  expand_limits(y = 100) +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  labs(
    title = sdg16$figs$fig5$title[language],
    x = " ",
    y = " ",
    fill = " ",
    caption = sdg16$figs$fig5$cap[language]
  )

police4_plot

Toqqissisimaneq pillugu misissuineq


# Import
police4_raw <-
  data.frame(
    Tryg = c(92.0, 86.8),
    hverken = c(1.5, 4.7),
    Utryg = c(4.4, 7.2),
    ved_ikke = c(2.2, 1.4),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police4 <-
  police4_raw %>%
  rename(`Hverken/eller` = hverken,
         `Ved ikke/ ønsker ikke at svare` = ved_ikke) %>%
  gather(svar, procent,-tid)

# Table
police4_table <-
  police4 %>%
  mutate(procent = format(procent, digits = 3, decimal.mark = ",")) %>%
  spread(tid, procent) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = TRUE) %>%
  add_footnote(
    sdg16$figs$fig5$foot[language],
    notation = "symbol"
  )

police4_table
Svar 2018 2019
Hverken/eller 1,5 4,7
Tryg 92,0 86,8
Utryg 4,4 7,2
Ved ikke/ ønsker ikke at svare 2,2 1,4
* Procentinngorlugu, inoqarfinni politeeqarfeqanngitsuni innuttaasut toqqissisimanerat.


Apeqqut: 1-7-imut eqqarsaatigigukku, tassani 1 isumaqarpoq ‘najugaqarfinni najugaqarnera eqqissisimalluinnartumik misigiffigaara’ 7-ilu ‘najugaqarfinni najugaqarneq toqqissisimananngilaq’, taava qanoq toqqissisimatigaat? Najugaqarfiit tassaavoq angerlarsimaffiit eqqaamiusilu. Titartakkami akissutit eqimattakkuutaarlugit takutinneqarput, 1-3-mik akisimasut tassaapput najugaqarfimminni toqqissisimallutik inuusut, 4-imik akisimasut tassaapput najugaqarfimminni eqqissisinngillat aamma toqqissisimannginnermik misigisimanngillat, 5-7-imillu akisimasut tassaapput najugaqarfimminni toqqissisimanngitsut.

Malugiuk: Kisitsisinik paasissutissiornermi nalornissutit isigissanngikkaani innuttaasut najukkaminni toqqissisimasut amerlassusaat ikilisimapput.



# Import
police5_raw <-
  data.frame(
    tillid = c(85.0, 89.3),
    ikke_tillid = c(12.5, 7.7),
    ved_ikke = c(2.5, 3.0),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police5 <-
  police5_raw %>%
  rename(
    `Tillid til politiet` = tillid,
    `Ikke tillid til politiet` = ikke_tillid,
    `Ved ikke/ ønsker ikke at svare` = ved_ikke
  ) %>%
  gather(svar, procent,-tid) %>% 
  mutate(tid = as.factor(tid))

# Plot
police5_plot <-
  police5 %>%
  ggplot(aes(x = svar,
             y = procent,
             fill = tid)) +
  geom_col(position = "dodge2") +
  theme_statgl() + scale_fill_statgl() +
  expand_limits(y = 100) +
  scale_y_continuous(labels  = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
    decimal.mark = ",")) +
  labs(
    title = sdg16$figs$fig6$title[language],
    x = " ",
    y = " ",
    fill = " ",
    caption = sdg16$figs$fig6$cap[language]
  )

police5_plot

Toqqissisimaneq pillugu misissuineq


# Import
police5_raw <-
  data.frame(
    tillid = c(85.0, 89.3),
    ikke_tillid = c(12.5, 7.7),
    ved_ikke = c(2.5, 3.0),
    tid = c(2018 , 2019)
  ) %>%
  as_tibble()

# Transform
police5 <-
  police5_raw %>%
  rename(
    `Tillid til politiet` = tillid,
    `Ikke tillid til politiet` = ikke_tillid,
    `Ved ikke/ ønsker ikke at svare` = ved_ikke
  ) %>%
  gather(svar, procent, -tid)

# Table
police5_table <-
  police5 %>%
  mutate(procent = format(procent, digits = 3, decimal.mark = ",")) %>%
  spread(tid, procent) %>%
  set_names(str_to_title(names(.))) %>%
  kable(align = "lrr") %>%
  kable_styling(bootstrap_options = c("condensed", "reactive"),
                full_width = TRUE) %>%
  add_footnote(sdg16$figs$fig6$foot[language],
               notation = "symbol")

police5_table
Svar 2018 2019
Ikke tillid til politiet 12,5 7,7
Tillid til politiet 85,0 89,3
Ved ikke/ ønsker ikke at svare 2,5 3,0
* Procentinngorlugu, Kalaallit Nunaanni innuttaasut politiinut tatiginninnerat.


Apeqqut: Oqaaseqaammi uani isumaqataavit? Ikiorneqarnissannik pisariaqartitsissagaluaruma politiit tatigaakka. Titartakkami innuttaasut politiinut tatiginninnermut apeqqummut angersimasut kiisalu naameersimasut immikkoortinneqarput.

Maluigiuk: Kisitsisinik paasissutissiornermi nalornissutit isigissanngikkaani, innuttaasut politiinut tatiginninnerat annertunerulersimavoq. Sanilliussinermili ukiuni pineqartuni marlunni apeqqutip sammisani assigiinngitsuni apequtigineqarsimasinnaanera eqqumaffigineqassaaq.

Taasinerit procentinngorlugit


GS Taasinerit procentinngorlugit
# Import
SAXLANST_raw <- 
  statgl_url("SAXLANST", lang = language) %>%
  statgl_fetch(
    "constituencies" = c(0),
    "votes cast"     = c(16, 20),
    .col_code        = TRUE
  ) %>% 
  as_tibble()

# Transform
SAXLANST <- 
  SAXLANST_raw %>% 
  separate(time, c("day", "month", "year")) %>% 
  select(-c("day", "month")) %>% 
  mutate(
    year = year %>% as.numeric(),
    year = year + 1900,
    plus = case_when(
      year < 1950 ~ 100, 
      year > 1950 ~ 0),
    year = year + plus,
    `votes cast` = `votes cast` %>% fct_reorder(value, sum)
  ) %>% 
  select(-ncol(.)) %>% 
  spread(3, 4) %>% 
  rename(
    valid = 3,
    total = 4
  ) %>% 
  mutate(
    vote = valid / total * 100,
    mean = mean(vote)
  )

# Plot
SAXLANST %>% 
  ggplot(aes(
    x = year,
    y = vote
  )) +
  geom_point(size = 2) +
  geom_segment(aes(
    x = year,
    xend = year,
    y = 0,
    yend = vote
  )) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl() +
  expand_limits(y = 0) +
  expand_limits(y = 100) +
  geom_hline(
    size = 15,
    alpha = 0.1, 
    color = "green",
    yintercept = SAXLANST[["mean"]][1]
    ) +
  labs(
    title    = sdg16$figs$fig9$title[language],
    subtitle = SAXLANST[[2]][1],
    y        = " ",
    x        = " ",
    caption  = sdg16$figs$fig9$cap[language]
    )

Kisitsisaataasivik


# Table
SAXLANST %>% 
  select(year, vote) %>% 
  #arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 20) %>% 
  mutate(
    year = year %>% factor(levels = unique(year)),
    vote = vote %>% round(1)
  ) %>% 
  spread(year, vote) %>% 
  statgl_table() %>% 
  add_footnote(sdg16$figs$fig9$foot[language], notation = "symbol")
2005 2009 2013 2014 2018 2021
74,2 72,6 73,3 72,2 71,1 64,5
* Taasinerit procentinngorlugit, Inatsisartunut qinersineq
# Import
SAXKOMST_raw <- 
  statgl_url("SAXKOMST", lang = language) %>% 
  statgl_fetch(
    municipality = c(0),
    "votes cast" = c(15, 19),
    .col_code    = TRUE
  ) %>% 
  as_tibble()

# Transform
SAXKOMST <- 
  SAXKOMST_raw %>% 
  separate(time, c("day", "month", "year")) %>% 
  select(-c("day", "month")) %>% 
  mutate(
    year = year %>% as.numeric(),
    year = year + 1900,
    plus = case_when(
      year < 1950 ~ 100, 
      year > 1950 ~ 0),
    year = year + plus,
    `votes cast` = `votes cast` %>% fct_reorder(value, sum)
    ) %>% 
  select(-ncol(.)) %>% 
  spread(3, 4) %>% 
  rename(
    valid = 3,
    total = 4
  ) %>% 
  mutate(
    vote = valid / total * 100,
    mean = mean(vote)
    )

# Plot
SAXKOMST %>% 
  ggplot(aes(
    x = year,
    y = vote
  )) +
  geom_point(size = 2) +
  geom_segment(aes(
    x = year,
    xend = year,
    y = 0,
    yend = vote
  )) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl() +
  expand_limits(y = 0) +
  expand_limits(y = 100) +
  geom_hline(
    size       = 15,
    alpha      = 0.1, 
    color      = "red",
    yintercept = SAXKOMST[["mean"]][1],
    ) +
  labs(
    title    = sdg16$figs$fig8$title[language],
    subtitle = SAXKOMST[[2]][1],
    y        = " ",
    x        = " ",
    caption  = sdg16$figs$fig8$cap[language]
    )

Kisitsisaataasivik


# Table
SAXKOMST %>% 
  select(year, vote) %>% 
  #arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 20) %>% 
  mutate(
    year = year %>% factor(levels = unique(year)),
    vote = vote %>% round(1)
  ) %>% 
  spread(year, vote) %>% 
  statgl_table() %>% 
  add_footnote(sdg16$figs$fig8$foot[language], notation = "symbol")
2005 2008 2013 2017 2021
66,4 61,2 57,6 60,1 62,6
* Taasinerit procentinngorlugit, Kommunimut qinersineq
# Import
SAXFOLK_raw <- 
  statgl_url("SAXFOLK", lang = language) %>% 
  statgl_fetch(
    municipality = c(0),
    "votes cast" = c(12, 16),
    .col_code    = TRUE
    ) %>% 
    as_tibble()

# Transform
SAXFOLK <- 
  SAXFOLK_raw %>% 
  separate(time, c("day", "month", "year")) %>% 
  select(-c("day", "month")) %>% 
  mutate(
    year = year %>% as.numeric(),
    year = year + 1900,
    plus = case_when(
      year < 1980 ~ 100, 
      year > 1980 ~ 0
      ),
    year = year + plus,
    `votes cast` = `votes cast` %>% fct_reorder(value, sum)) %>% 
  select(-ncol(.)) %>% 
  spread(3, 4) %>% 
  rename(
    valid = 3,
    total = 4
  ) %>% 
  mutate(vote = valid / total * 100,
         mean = mean(vote))

# Plot
SAXFOLK %>% 
  ggplot(aes(
    x = year,
    y = vote
  )) +
  geom_point(size = 2) +
  geom_segment(aes(
    x = year,
    xend = year,
    y = 0,
    yend = vote
  )) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl() +
  expand_limits(y = 0) +
  expand_limits(y = 100) +
  geom_hline(
    size = 15,
    alpha = 0.1,
    color = "blue",
    yintercept = SAXFOLK[["mean"]][1]
    ) +
  labs(
    title    = sdg16$figs$fig7$title[language],
    subtitle = SAXFOLK[[2]][1],
    y        = " ",
    x        = " ",
    caption  = sdg16$figs$fig7$cap[language]
    )

Kisitsisaataasivik


# Table
SAXFOLK %>% 
  select(year, vote) %>% 
  #arrange(desc(year)) %>% 
  filter(year >= year(Sys.time()) - 20) %>% 
  mutate(
    year = year %>% factor(levels = unique(year)),
    vote = vote %>% round(1)
    ) %>% 
  spread(year, vote) %>% 
  statgl_table() %>% 
  add_footnote(sdg16$figs$fig7$foot[language], notation = "symbol")
2005 2007 2011 2015 2019 2022
58,6 63,2 55 49,2 48,4 46,6
* Taasinerit procentinngorlugit, Folketing-imut qinersineq