Utertiguk


Anguniagaq 13: Silap pissusia suliniuteqarfigalugu

DCE-mit nukissiuutinik atuinermi silaannarmik mingutsitsisumik aniatitsinermik naatsorsuutit


GS Nukissiuutinik atuinermi silaannarmik mingutsitsisumik aniatitsineq suliaqarfik malillugu
# Import
ENX1EM1_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/53af71be-9a37-48a3-983c-e98720f29d40.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))

# Transform
ENX1EM1 <- 
  ENX1EM1_raw %>% 
  rename(
    "gas"    = 1,
    "sector" = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    time   = time %>% make_date(),
    value  = value / 1000
  )

# Plot
ENX1EM1 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = gas
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg13$figs$fig1$title[language],
    subtitle =  ENX1EM1[[2]][1],
    x        = " ",
    y        = sdg13$figs$fig1$y_lab[language],
    fill     = sdg13$figs$fig1$fill[language],
    caption  = sdg13$figs$fig1$cap[language]
  )

Kisitsisaataasivik

Periaaseq

Rapport


# Transform
ENX1EM1 <- 
  ENX1EM1_raw %>% 
  rename(
    "gas"    = 1,
    "sector" = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    value  = value / 1000,
    value  = round(value, 3)
  ) %>% 
  filter(time >= year(Sys.time()) - 8) %>% 
  spread(1, ncol(.)) %>% 
  arrange(desc(time))

# Table
ENX1EM1 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(year_col = " ") %>% 
  pack_rows(index = table(ENX1EM1[[1]])) %>% 
  add_footnote(sdg13$figs$fig1$foot[language], notation = "symbol")
SF6 HFC Lattergassi N2O Metani CH4 Kuldioxidi CO2
Gassimik silaannarmik kissattoortitsisussamik aniatitsineq tamakkiisumik
2023 0,003 11,49 13,41 15,9 611
2022 0,003 12,20 12,30 16,1 589
2021 0,003 13,02 10,19 16,2 548
2020 0,003 12,94 10,02 16,1 552
2019 0,003 11,14 9,53 16,0 528
2018 0,003 9,76 8,71 16,1 526
2017 0,003 10,09 8,52 15,9 538
* CO2-mik aniatitsineq tonsinngorlugu tuusintikkaartunik.



# Import
ENX1EM1_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/ca6d79eb-6230-4f07-ba49-c486f6e1edd4.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))


# Transform
ENX1EM1 <-
  ENX1EM1_raw %>% 
  rename(
    "time"   = 1,
    "gas"    = 2,
    "sector" = 3,
    "value"  = 4
  ) %>% 
  filter(sector != unique(ENX1EM1_raw[[3]])[5]) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    sector = sector %>% str_remove_all("[1-5]|\\.") %>% trimws(),
    sector = sector %>% fct_inorder(),
    value  = value / 1000
  )


ENX1EM1 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = gas
  )) +
  geom_area() +
  facet_wrap(~ sector, scales = "free") +
   scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title   = sdg13$figs$fig2$title[language],
    x       = " ",
    y       = sdg13$figs$fig2$y_lab[language],
    fill    = str_to_title(colnames(ENX1EM1_raw)[2]),
    caption = sdg13$figs$fig2$cap[language]
  )

Kisitsisaataasivik

Periaaseq

Rapport


# Transform
ENX1EM1 <-
  ENX1EM1_raw %>% 
  rename(
    "time"   = 1,
    "gas"    = 2,
    "sector" = 3,
    "value"  = 4
  ) %>% 
  filter(
    sector != unique(ENX1EM1_raw[[3]])[5],
    time >= year(Sys.time())- 8,
    value != 0) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    sector = sector %>% str_remove_all("[1-5]|\\.") %>% trimws(),
    sector = sector %>% fct_inorder(),
    value  = value / 1000
  ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(1, ncol(.)) %>% 
  arrange(sector)

# Table
ENX1EM1 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(ENX1EM1[[2]])) %>% 
  add_footnote(sdg13$figs$fig2$foot[language],
               notation = "symbol")
2017 2018 2019 2020 2021 2022 2023
Nukimmik atuineq
Lattergassi N2O 2,096 2,039 2,045 2,092 2,093 2,291 2,331
Metani CH4 1,369 1,387 1,378 1,442 1,430 1,501 1,515
Kuldioxidi CO2 532,476 520,309 522,563 545,965 542,840 583,722 605,406
Suliffissuaqarnermi atortussiassat kemiimi akulerunnerat
SF6 0,003 0,003 0,003 0,003 0,003 0,003 0,003
HFC 10,094 9,761 11,144 12,944 13,023 12,204 11,487
Lattergassi N2O 0,001 0,001 0,001 0,001 0,001 0,001 0,001
Metani CH4 0,001 0,001 0,001 0,001 0,001 0,001 0,001
Kuldioxidi CO2 0,721 0,949 1,014 0,854 0,715 0,718 0,745
Nunalerineq
Lattergassi N2O 1,628 1,433 2,093 2,207 2,375 4,250 5,035
Metani CH4 7,086 7,234 7,086 7,197 7,225 7,052 6,907
Kuldioxidi CO2 0,004 0,004 0,004 0,004 0,004 0,004 0,004
Eqqakkanik aqutsineq
Lattergassi N2O 4,750 5,185 5,337 5,672 5,667 5,712 5,999
Metani CH4 7,477 7,478 7,483 7,488 7,498 7,506 7,509
Kuldioxidi CO2 3,385 3,409 3,427 3,450 3,474 3,493 3,511
* CO2-mik aniatitsineq 1000 tonsinngorlugu

Gassimik silaannarmik kissattoortitsisussamik nukissiuutinik atuinernit anitsinermit atuinermi kisitsisit pingaarnerit


GS Gassimik silaannarmik kissattoortitsisussamik nukissiuutinik atuinernit anitsinermit atuinermi kisitsisit pingaarnerit
ENX6KEY_raw <- 
  statgl_url("ENX6KEY", lang = "da") |> 
  statgl_fetch(
    "key figure" = 16:18,
    time = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ENX6KEY <- 
  ENX6KEY_raw |> 
  rename(key = `key figure`) |> 
  mutate(time = as.numeric(time))



# Plot
ENX6KEY |> 
  ggplot(aes(
    x = time,
    y = value,
    color = key
  )) +
  geom_line(size = 2) +
  facet_wrap(~ key, nrow = 3, scales = "free_y") +
  theme_statgl() +
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg13$figs$fig5$title[language],
    subtitle = sdg13$figs$fig5$sub[language],
    y        = " ",
    x        = " ",
    caption  = sdg13$figs$fig5$cap[language]
  )

Kisitsisaataasivik

#Table
ENX6KEY %>% 
  filter(time >= year(Sys.time()) - 8) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE)
2017 2018 2019 2020 2021 2022 2023
Faktisk emission i alt [1.000 ton CO2e] 535,7 523,4 525,7 549,4 546,2 587,4 609,1
Faktisk emission i alt pr. indbygger [ton CO2e] 9,5 9,3 9,4 9,7 9,6 10,4 10,7
Faktisk emission pr. BNP-enhed [ton CO2e pr. mio. BNP] 36,3 35,1 34,4 35,6 35,2 NA NA