Back


Goal 14: Life below water

Consumption of marine resources


GS Consumption of marine resources
FIX020_raw <- 
  statgl_url("FIX021", lang = language) %>% 
  statgl_fetch(
    species   = px_all(),
    area      = px_all(),
    form      = px_all(),
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble()

vec        <- 7:8
names(vec) <- c(sdg14$figs$fig0$cols$col1[language], sdg14$figs$fig0$cols$col2[language])

  
FIX020 <- 
  FIX020_raw %>% 
  mutate(
    species = species %>% fct_inorder(),
    form = form %>% fct_inorder(),
    time = time %>% as.numeric()
    ) %>% 
  spread(form, value) %>% 
  rename(
    "RÃ¥dgivning"  = 4,
    "Kvotex"      = 5,
    "Fangstx"     = 6
  ) %>% 
  filter(Kvotex > 0) %>% 
  mutate(
    Kvoteafvigelse  = Kvotex - RÃ¥dgivning,
    Fangstafvigelse = Fangstx - RÃ¥dgivning
  ) %>% 
  rename(vec) %>% 
  select(-c(4:6)) %>% 
  gather(key, value, -(1:3)) %>% 
  mutate(value = value / 1000)

FIX020 %>% 
  filter(species == unique(FIX020[[1]])[1]) %>% 
  ggplot(aes(
    x = time, 
    y = value,
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  scale_y_continuous(breaks= scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  facet_wrap(~ area) +
  labs(
    title    = unique(FIX020[[1]])[1],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$units$`1000_ton`[language] %>% unlist(),
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap_fish[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    time > year(Sys.time()) - 6,
    species == unique(FIX020_raw[[1]])[1],
    area %in% unique(FIX020_raw[[2]])[1:2]
    ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab["species"] %>% table()) %>% 
  pack_rows(index = tab["area"] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$ton[language] %>% unlist(), notation = "symbol")
2021 2022
Prawns
Eastgreenland
Advice 3.000 3.000
Catch 3.071 5.510
Kvota 7.000 6.850
Westgreenland
Advice 113.777 113.777
Catch 108.352 112.659
Kvota 113.777 113.777
* Ton





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[2]) %>% 
  ggplot(aes(
    x = time, 
    y = value,
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  facet_wrap(~ area) +
  labs(
    title    = unique(FIX020[[1]])[2],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$units$`1000_ton`[language] %>% unlist(),
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap_fish[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    time > year(Sys.time()) - 6,
    species == unique(FIX020_raw[[1]])[2],
    area != unique(FIX020_raw[[2]])[3]
    ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab["species"] %>% table()) %>% 
  pack_rows(index = tab["area"] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$ton[language] %>% unlist(), notation = "symbol")
2021 2022
Grenland halibut
Eastgreenland
Advice 8.847 10.020
Catch 8.255 8.933
Kvota 8.847 10.020
Westgreenland
Advice 18.184 18.185
Catch 17.989 18.112
Kvota 18.184 18.185
* Ton





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[3]) %>% 
  ggplot(aes(
    x = time, 
    y = value,
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  facet_wrap(~ area) +
  labs(
    title    = unique(FIX020[[1]])[3],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$units$`1000_ton`[language] %>% unlist(),
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap_fish[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    time > year(Sys.time()) - 6,
    species == unique(FIX020_raw[[1]])[3],
    area %in% unique(FIX020_raw[[2]])[c(1, 3)]
    ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab["species"] %>% table()) %>% 
  pack_rows(index = tab["area"] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$ton[language] %>% unlist(), notation = "symbol")
2021 2022
Atlantic cod
West- Eastgreenland
Advice 6.091 8.708
Catch 16.146 21.487
Kvota 26.091 21.630
Westgreenland
Advice NA NA
Catch NA NA
Kvota NA NA
* Ton





FIX020_raw <- 
  statgl_url("FIX020", lang = language) %>% 
  statgl_fetch(
    species   = px_all(),
    area      = px_all(),
    form      = px_all(),
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble()

vec        <- 7:8
names(vec) <- c(sdg14$figs$fig0$cols$col1[language], sdg14$figs$fig0$cols$col2[language])

FIX020 <- 
  FIX020_raw %>% 
  mutate(
    form = form %>% fct_inorder(),
    area = area %>% fct_inorder(),
    time = time %>% as.numeric()
    ) %>% 
  spread(form, value) %>% 
  rename(
    "RÃ¥dgivning" = 4,
    "Kvote"      = 5,
    "Fangst"     = 6
    ) %>% 
  mutate(
    Kvoteafvigelse  = Kvote - RÃ¥dgivning,
    Fangstafvigelse = Fangst - RÃ¥dgivning
  ) %>% 
  rename(vec) %>% 
  filter(Kvote > 0) %>% 
  select(-(4:6)) %>% 
  gather(key, value, -c(species, area, time))


FIX020 %>% 
  filter(species == unique(FIX020[[1]])[6]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[6],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[6],
    area != unique(FIX020_raw[[2]])[3]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Peluga
Westgreenland
Advice 265
Catch 139
Kvota 265
Qaanaaq
Advice 37
Catch 9
Kvota 29
Eastgreenland
Advice 0
Catch 0
Kvota 0
Melville Bay
Advice 0
Catch 0
Kvota 0
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[5]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[5],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[5],
    area %in% unique(FIX020_raw[[2]])[1:2]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Narwhale
Westgreenland
Advice 251
Catch 235
Kvota 251
Eastgreenland
Advice 0
Catch 20
Kvota 60
* Quantity





Consumption of marine resources -2

GS Consumption of marine resources -2
FIX020 %>% 
  filter(species == unique(FIX020[[1]])[4]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[4],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[4],
    area %in% unique(FIX020_raw[[2]])[c(1, 4)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Minke whale
Westgreenland
Advice 164
Catch 177
Kvota 164
Qaanaaq
Advice 0
Catch 0
Kvota 0
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[1]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[1],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[1],
    area %in% unique(FIX020_raw[[2]])[c(1)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Bowhead whale
Westgreenland
Advice 2
Catch 0
Kvota 2
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[2]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[2],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[2],
    area %in% unique(FIX020_raw[[2]])[c(1)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Fin whale
Westgreenland
Advice 19
Catch 2
Kvota 19
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[3]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[3],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter() %>% 
  filter(
    species == unique(FIX020[[1]])[3],
    area %in% unique(FIX020_raw[[2]])[1:3]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Humpback whale
Westgreenland
Advice 10
Catch 7
Kvota 10
Eastgreenland
Advice 0
Catch 0
Kvota 0
Northern water
Advice 0
Catch 0
Kvota 0
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[7]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[7],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[7],
        area %in% unique(FIX020_raw[[2]])[c(1)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Polar bear
Westgreenland
Advice 92
Catch 86
Kvota 92
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[8]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[8],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[8],
    area %in% unique(FIX020_raw[[2]])[1:2]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2021
Walrus
Westgreenland
Advice 86
Catch 67
Kvota 74
Eastgreenland
Advice 19
Catch 12
Kvota 17
* Quantity





Gross value added for fishing industries


GS Gross value added for fishing industries
# Import 
NRX0418_raw <- 
  statgl_url("NRX0418", lang = language) %>%  
  statgl_fetch(
    units     = "K",
    industry  = c("BVTTOT", "BVT0301", "BVT0302", "BVT0303"), 
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble()
  


NRX0418_raw %>% 
  mutate(time = time %>% as.numeric()) %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws()) %>% 
  ggplot(aes(
    x = time,
    y = value/1e3,
    color = industry
  )) +
  geom_line(size = 2) +
  facet_wrap(~ industry, scales = "free") +
  theme_statgl() + 
  theme(legend.position = "none") +
  scale_color_statgl() +
  labs(
    title    = sdg14$figs$fig9$title[language],
    subtitle = NRX0418_raw %>% pull(units) %>% unique(),
    y        = sdg14$figs$fig9$y_lab[language],
    x        = " ",
    caption  = sdg14$figs$fig9$cap[language]
  )

StatBank


table <- 
  NRX0418_raw %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws() %>% fct_inorder()) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  filter(!time %in% 2019:2020) %>% 
  filter(time >= max(time) - 7) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% as.character() %>% fct_inorder()) %>% 
  mutate(value = round(value / 1000, 1)) %>% 
  spread(time, value)

table %>% 
  select(-units) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table[1] %>% table()) %>% 
  add_footnote(sdg14$figs$fig9$y_lab[language], notation = "symbol")
2016 2017 2018 2021 2022 2023
2010-prices, chained values
Gross value added total 14,7 14,8 15,0 15,8 16,1 16,3
Inshore fishing 0,3 0,3 0,4 NA NA NA
Offshore fisheries 1,0 1,1 1,1 NA NA NA
Fishing, other 0,3 0,2 0,2 NA NA NA
* Billions (DKK)
NRX13_raw <- 
  statgl_url("NRX13", lang = language) %>% 
  statgl_fetch(
    Kode  = c("VBVT0301", "VBVT0302", "VBVT0303"),
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble() %>% 
  rename("industry" = 1, "time" = 2)

NRX13_raw %>% 
  drop_na() %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws() %>% fct_rev()) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  ggplot(aes(
    x = time,
    y = value,
    color = industry
  )) +
  geom_line(size = 2) +
  geom_hline(yintercept = 0, linetype = "dashed") + 
  facet_wrap(~ industry, scales = "free", ncol = 1) +
    scale_y_continuous(labels  = scales::percent_format(
    scale = 1
  )) +
  theme_statgl() + 
  theme(legend.position = "none") +
  scale_color_statgl() +
  labs(
    title    = sdg14$figs$fig11$title[language],
    y        = sdg14$figs$fig11$y_lab[language],
    x        = " ",
    caption  = sdg14$figs$fig11$cap[language]
  )

StatBank


NRX13_raw %>% 
  drop_na() %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws() %>% fct_rev()) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  filter(time >= max(time) -5) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% as.character() %>% fct_inorder()) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(sdg14$figs$fig11$y_lab[language], notation = "symbol")
2015 2016 2017 2018 2019 2020
Offshore fisheries -1,59 1,43 1,05 -0,39 0,45 0,12
Inshore fishing -1,84 1,28 -0,02 0,55 0,26 -0,41
Fishing, other 0,04 0,43 -0,43 -0,11 0,22 -0,41
* Percentage point