Back


Goal 14: Life below water

Consumption of marine resources


GS Consumption of marine resources
FIX020_raw <- 
  statgl_url("FIX021", lang = language) %>% 
  statgl_fetch(
    species   = px_all(),
    area      = px_all(),
    form      = px_all(),
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble()

vec        <- 7:8
names(vec) <- c(sdg14$figs$fig0$cols$col1[language], sdg14$figs$fig0$cols$col2[language])

  
FIX020 <- 
  FIX020_raw %>% 
  mutate(
    species = species %>% fct_inorder(),
    form = form %>% fct_inorder(),
    time = time %>% as.numeric()
    ) %>% 
  spread(form, value) %>% 
  rename(
    "RÃ¥dgivning"  = 4,
    "Kvotex"      = 5,
    "Fangstx"     = 6
  ) %>% 
  filter(Kvotex > 0) %>% 
  mutate(
    Kvoteafvigelse  = Kvotex - RÃ¥dgivning,
    Fangstafvigelse = Fangstx - RÃ¥dgivning
  ) %>% 
  rename(vec) %>% 
  select(-c(4:6)) %>% 
  gather(key, value, -(1:3)) %>% 
  mutate(value = value / 1000)

FIX020 %>% 
  filter(species == unique(FIX020[[1]])[1]) %>% 
  ggplot(aes(
    x = time, 
    y = value,
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  scale_y_continuous(breaks= scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  facet_wrap(~ area) +
  labs(
    title    = unique(FIX020[[1]])[1],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$units$`1000_ton`[language] %>% unlist(),
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap_fish[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    time > year(Sys.time()) - 6,
    species == unique(FIX020_raw[[1]])[1],
    area %in% unique(FIX020_raw[[2]])[1:2]
    ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab["species"] %>% table()) %>% 
  pack_rows(index = tab["area"] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$ton[language] %>% unlist(), notation = "symbol")
2020 2021 2022
Prawns
Eastgreenland
Advice 2.000 3.000 3.000
Catch 3.172 3.071 5.510
Kvota 4.750 7.000 6.850
Westgreenland
Advice 108.383 113.777 113.777
Catch 107.860 108.352 112.659
Kvota 108.383 113.777 113.777
* Ton





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[2]) %>% 
  ggplot(aes(
    x = time, 
    y = value,
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  facet_wrap(~ area) +
  labs(
    title    = unique(FIX020[[1]])[2],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$units$`1000_ton`[language] %>% unlist(),
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap_fish[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    time > year(Sys.time()) - 6,
    species == unique(FIX020_raw[[1]])[2],
    area != unique(FIX020_raw[[2]])[3]
    ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab["species"] %>% table()) %>% 
  pack_rows(index = tab["area"] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$ton[language] %>% unlist(), notation = "symbol")
2020 2021 2022
Grenland halibut
Eastgreenland
Advice 8.010 8.847 10.020
Catch 7.046 8.255 8.933
Kvota 8.031 8.847 10.020
Westgreenland
Advice 18.184 18.184 18.185
Catch 18.146 17.989 18.112
Kvota 18.184 18.184 18.185
* Ton





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[3]) %>% 
  ggplot(aes(
    x = time, 
    y = value,
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  facet_wrap(~ area) +
  labs(
    title    = unique(FIX020[[1]])[3],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$units$`1000_ton`[language] %>% unlist(),
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap_fish[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    time > year(Sys.time()) - 6,
    species == unique(FIX020_raw[[1]])[3],
    area %in% unique(FIX020_raw[[2]])[c(1, 3)]
    ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab["species"] %>% table()) %>% 
  pack_rows(index = tab["area"] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$ton[language] %>% unlist(), notation = "symbol")
2020 2021 2022
Atlantic cod
West- Eastgreenland
Advice 3.409 6.091 8.708
Catch 15.807 16.146 21.487
Kvota 18.824 26.091 21.630
Westgreenland
Advice NA NA NA
Catch NA NA NA
Kvota NA NA NA
* Ton





FIX020_raw <- 
  statgl_url("FIX020", lang = language) %>% 
  statgl_fetch(
    species   = px_all(),
    area      = px_all(),
    form      = px_all(),
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble()

vec        <- 7:8
names(vec) <- c(sdg14$figs$fig0$cols$col1[language], sdg14$figs$fig0$cols$col2[language])

FIX020 <- 
  FIX020_raw %>% 
  mutate(
    form = form %>% fct_inorder(),
    area = area %>% fct_inorder(),
    time = time %>% as.numeric()
    ) %>% 
  spread(form, value) %>% 
  rename(
    "RÃ¥dgivning" = 4,
    "Kvote"      = 5,
    "Fangst"     = 6
    ) %>% 
  mutate(
    Kvoteafvigelse  = Kvote - RÃ¥dgivning,
    Fangstafvigelse = Fangst - RÃ¥dgivning
  ) %>% 
  rename(vec) %>% 
  filter(Kvote > 0) %>% 
  select(-(4:6)) %>% 
  gather(key, value, -c(species, area, time))


FIX020 %>% 
  filter(species == unique(FIX020[[1]])[6]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[6],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[6],
    area != unique(FIX020_raw[[2]])[3]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Peluga
Westgreenland
Advice 320 265
Catch 182 139
Kvota 320 265
Qaanaaq
Advice 20 37
Catch 12 9
Kvota 20 29
Eastgreenland
Advice 0 0
Catch 0 0
Kvota 0 0
Melville Bay
Advice 0 0
Catch 0 0
Kvota 0 0
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[5]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[5],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[5],
    area %in% unique(FIX020_raw[[2]])[1:2]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Narwhale
Westgreenland
Advice 251 251
Catch 84 235
Kvota 251 251
Eastgreenland
Advice 0 0
Catch 57 20
Kvota 50 60
* Quantity





Consumption of marine resources -2

GS Consumption of marine resources -2
FIX020 %>% 
  filter(species == unique(FIX020[[1]])[4]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[4],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[4],
    area %in% unique(FIX020_raw[[2]])[c(1, 4)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Minke whale
Westgreenland
Advice 164 164
Catch 138 177
Kvota 164 164
Qaanaaq
Advice 0 0
Catch 0 0
Kvota 0 0
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[1]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[1],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[1],
    area %in% unique(FIX020_raw[[2]])[c(1)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Bowhead whale
Westgreenland
Advice 2 2
Catch 0 0
Kvota 2 2
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[2]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[2],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[2],
    area %in% unique(FIX020_raw[[2]])[c(1)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Fin whale
Westgreenland
Advice 19 19
Catch 3 2
Kvota 19 19
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[3]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[3],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter() %>% 
  filter(
    species == unique(FIX020[[1]])[3],
    area %in% unique(FIX020_raw[[2]])[1:3]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Humpback whale
Westgreenland
Advice 10 10
Catch 4 7
Kvota 10 10
Eastgreenland
Advice 0 0
Catch 0 0
Kvota 0 0
Northern water
Advice 0 0
Catch 0 0
Kvota 0 0
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[7]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[7],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[7],
        area %in% unique(FIX020_raw[[2]])[c(1)]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Polar bear
Westgreenland
Advice 92 92
Catch 80 86
Kvota 92 92
* Quantity





FIX020 %>% 
  filter(species == unique(FIX020[[1]])[8]) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  ggplot(aes(
    x = time,
    y = value, 
    color = key
  )) +
  geom_hline(yintercept = 0, color = "red", size = 3, linetype = "dotted") +
  geom_line(size = 2) +
  facet_wrap( ~ area) +
  scale_y_continuous(breaks = scales:: pretty_breaks()) +
  theme_statgl() + 
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = unique(FIX020[[1]])[8],
    subtitle = sdg14$figs$fig0$sub[language],
    y        = sdg14$figs$fig0$y_lab[language],
    x        = " ",
    color    = " ",
    caption  = sdg14$figs$fig0$cap[language]
  )

StatBank


tab <- 
  FIX020_raw %>% 
  filter(
    species == unique(FIX020[[1]])[8],
    area %in% unique(FIX020_raw[[2]])[1:2]
    ) %>% 
  mutate(area = fct_reorder(area, value, .fun = sum, .desc = TRUE)) %>% 
  filter(time > year(Sys.time()) - 6) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>%  fct_inorder()) %>% 
  spread(time, value)

tab %>% 
  select(-c(species, area)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = tab[["species"]] %>% table) %>% 
  pack_rows(index = tab[["area"]] %>% table()) %>% 
  add_footnote(sdg14$figs$fig0$units$antal[language] %>% unlist(), notation = "symbol")
2020 2021
Walrus
Westgreenland
Advice 86 86
Catch 75 67
Kvota 74 74
Eastgreenland
Advice 19 19
Catch 8 12
Kvota 17 17
* Quantity





Gross value added for fishing industries


GS Gross value added for fishing industries
# Import 
NRX0418_raw <- 
  statgl_url("NRX0418", lang = language) %>%  
  statgl_fetch(
    units     = "K",
    industry  = c("BVTTOT", "BVT0301", "BVT0302", "BVT0303"), 
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble()
  


NRX0418_raw %>% 
  mutate(time = time %>% as.numeric()) %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws()) %>% 
  ggplot(aes(
    x = time,
    y = value/1e3,
    color = industry
  )) +
  geom_line(size = 2) +
  facet_wrap(~ industry, scales = "free") +
  theme_statgl() + 
  theme(legend.position = "none") +
  scale_color_statgl() +
  labs(
    title    = sdg14$figs$fig9$title[language],
    subtitle = NRX0418_raw %>% pull(units) %>% unique(),
    y        = sdg14$figs$fig9$y_lab[language],
    x        = " ",
    caption  = sdg14$figs$fig9$cap[language]
  )

StatBank


table <- 
  NRX0418_raw %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws() %>% fct_inorder()) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  filter(!time %in% 2019:2020) %>% 
  filter(time >= max(time) - 7) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% as.character() %>% fct_inorder()) %>% 
  mutate(value = round(value / 1000, 1)) %>% 
  spread(time, value)

table %>% 
  select(-units) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table[1] %>% table()) %>% 
  add_footnote(sdg14$figs$fig9$y_lab[language], notation = "symbol")
2016 2017 2018 2021 2022 2023
2010-prices, chained values
Gross value added total 14,7 14,8 15,0 15,8 16,1 16,3
Inshore fishing 0,3 0,3 0,4 NA NA NA
Offshore fisheries 1,0 1,1 1,1 NA NA NA
Fishing, other 0,3 0,2 0,2 NA NA NA
* Billions (DKK)
NRX13_raw <- 
  statgl_url("NRX13", lang = language) %>% 
  statgl_fetch(
    Kode  = c("VBVT0301", "VBVT0302", "VBVT0303"),
    time      = px_all(),
    .col_code = TRUE
  ) %>% 
  as_tibble() %>% 
  rename("industry" = 1, "time" = 2)

NRX13_raw %>% 
  drop_na() %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws() %>% fct_rev()) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  ggplot(aes(
    x = time,
    y = value,
    color = industry
  )) +
  geom_line(size = 2) +
  geom_hline(yintercept = 0, linetype = "dashed") + 
  facet_wrap(~ industry, scales = "free", ncol = 1) +
    scale_y_continuous(labels  = scales::percent_format(
    scale = 1
  )) +
  theme_statgl() + 
  theme(legend.position = "none") +
  scale_color_statgl() +
  labs(
    title    = sdg14$figs$fig11$title[language],
    y        = sdg14$figs$fig11$y_lab[language],
    x        = " ",
    caption  = sdg14$figs$fig11$cap[language]
  )

StatBank


NRX13_raw %>% 
  drop_na() %>% 
  mutate(industry = industry %>% str_remove_all("[:digit:]") %>% trimws() %>% fct_rev()) %>% 
  mutate(time = time %>% as.numeric()) %>% 
  filter(time >= max(time) -5) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% as.character() %>% fct_inorder()) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(sdg14$figs$fig11$y_lab[language], notation = "symbol")
2015 2016 2017 2018 2019 2020
Offshore fisheries -1,59 1,43 1,05 -0,39 0,45 0,12
Inshore fishing -1,84 1,28 -0,02 0,55 0,26 -0,41
Fishing, other 0,04 0,43 -0,43 -0,11 0,22 -0,41
* Percentage point