Back


Goal 13: Climate action

Emission statement from DCE


GS Greenhouse gas emission by sector
# Import
ENX1EM1_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/53af71be-9a37-48a3-983c-e98720f29d40.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))

# Transform
ENX1EM1 <- 
  ENX1EM1_raw %>% 
  rename(
    "gas"    = 1,
    "sector" = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    time   = time %>% make_date(),
    value  = value / 1000
  )

# Plot
ENX1EM1 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = gas
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg13$figs$fig1$title[language],
    subtitle =  ENX1EM1[[2]][1],
    x        = " ",
    y        = sdg13$figs$fig1$y_lab[language],
    fill     = sdg13$figs$fig1$fill[language],
    caption  = sdg13$figs$fig1$cap[language]
  )

StatBank

Method

Report


# Transform
ENX1EM1 <- 
  ENX1EM1_raw %>% 
  rename(
    "gas"    = 1,
    "sector" = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    value  = value / 1000,
    value  = round(value, 3)
  ) %>% 
  filter(time >= year(Sys.time()) - 8) %>% 
  spread(1, ncol(.)) %>% 
  arrange(desc(time))

# Table
ENX1EM1 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(year_col = " ") %>% 
  pack_rows(index = table(ENX1EM1[[1]])) %>% 
  add_footnote(sdg13$figs$fig1$foot[language], notation = "symbol")
SF6 HFC Nitrous oxide N2O Methan CH4 Carbondioxid CO2
Total (net emissions)
2023 0,003 11,49 13,41 15,9 611
2022 0,003 12,20 12,30 16,1 589
2021 0,003 13,02 10,19 16,2 548
2020 0,003 12,94 10,02 16,1 552
2019 0,003 11,14 9,53 16,0 528
2018 0,003 9,76 8,71 16,1 526
2017 0,003 10,09 8,52 15,9 538
* 1000 tons of CO2 equivalents



# Import
ENX1EM1_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/ca6d79eb-6230-4f07-ba49-c486f6e1edd4.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))


# Transform
ENX1EM1 <-
  ENX1EM1_raw %>% 
  rename(
    "time"   = 1,
    "gas"    = 2,
    "sector" = 3,
    "value"  = 4
  ) %>% 
  filter(sector != unique(ENX1EM1_raw[[3]])[5]) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    sector = sector %>% str_remove_all("[1-5]|\\.") %>% trimws(),
    sector = sector %>% fct_inorder(),
    value  = value / 1000
  )


ENX1EM1 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = gas
  )) +
  geom_area() +
  facet_wrap(~ sector, scales = "free") +
   scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title   = sdg13$figs$fig2$title[language],
    x       = " ",
    y       = sdg13$figs$fig2$y_lab[language],
    fill    = str_to_title(colnames(ENX1EM1_raw)[2]),
    caption = sdg13$figs$fig2$cap[language]
  )

StatBank

Method

Report


# Transform
ENX1EM1 <-
  ENX1EM1_raw %>% 
  rename(
    "time"   = 1,
    "gas"    = 2,
    "sector" = 3,
    "value"  = 4
  ) %>% 
  filter(
    sector != unique(ENX1EM1_raw[[3]])[5],
    time >= year(Sys.time())- 8,
    value != 0) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    sector = sector %>% str_remove_all("[1-5]|\\.") %>% trimws(),
    sector = sector %>% fct_inorder(),
    value  = value / 1000
  ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(1, ncol(.)) %>% 
  arrange(sector)

# Table
ENX1EM1 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(ENX1EM1[[2]])) %>% 
  add_footnote(sdg13$figs$fig2$foot[language],
               notation = "symbol")
2017 2018 2019 2020 2021 2022 2023
Emissions from fuel combustion
Nitrous oxide N2O 2,096 2,039 2,045 2,092 2,093 2,291 2,331
Methan CH4 1,369 1,387 1,378 1,442 1,430 1,501 1,515
Carbondioxid CO2 532,476 520,309 522,563 545,965 542,840 583,722 605,406
Industrial Processes
SF6 0,003 0,003 0,003 0,003 0,003 0,003 0,003
HFC 10,094 9,761 11,144 12,944 13,023 12,204 11,487
Nitrous oxide N2O 0,001 0,001 0,001 0,001 0,001 0,001 0,001
Methan CH4 0,001 0,001 0,001 0,001 0,001 0,001 0,001
Carbondioxid CO2 0,721 0,949 1,014 0,854 0,715 0,718 0,745
Agriculture
Nitrous oxide N2O 1,628 1,433 2,093 2,207 2,375 4,250 5,035
Methan CH4 7,086 7,234 7,086 7,197 7,225 7,052 6,907
Carbondioxid CO2 0,004 0,004 0,004 0,004 0,004 0,004 0,004
Waste
Nitrous oxide N2O 4,750 5,185 5,337 5,672 5,667 5,712 5,999
Methan CH4 7,477 7,478 7,483 7,488 7,498 7,506 7,509
Carbondioxid CO2 3,385 3,409 3,427 3,450 3,474 3,493 3,511
* 1000 tons of CO2 equivalents

Key figures on greenhouse gas emissions from energy consumption


GS Key figures on greenhouse gas emissions from energy consumption
ENX6KEY_raw <- 
  statgl_url("ENX6KEY", lang = "da") |> 
  statgl_fetch(
    "key figure" = 16:18,
    time = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ENX6KEY <- 
  ENX6KEY_raw |> 
  rename(key = `key figure`) |> 
  mutate(time = as.numeric(time))



# Plot
ENX6KEY |> 
  ggplot(aes(
    x = time,
    y = value,
    color = key
  )) +
  geom_line(size = 2) +
  facet_wrap(~ key, nrow = 3, scales = "free_y") +
  theme_statgl() +
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg13$figs$fig5$title[language],
    subtitle = sdg13$figs$fig5$sub[language],
    y        = " ",
    x        = " ",
    caption  = sdg13$figs$fig5$cap[language]
  )

StatBank

#Table
ENX6KEY %>% 
  filter(time >= year(Sys.time()) - 8) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE)
2017 2018 2019 2020 2021 2022 2023
Faktisk emission i alt [1.000 ton CO2e] 535,7 523,4 525,7 549,4 546,2 587,4 609,1
Faktisk emission i alt pr. indbygger [ton CO2e] 9,5 9,3 9,4 9,7 9,6 10,4 10,7
Faktisk emission pr. BNP-enhed [ton CO2e pr. mio. BNP] 36,3 35,1 34,4 35,6 35,2 NA NA