Back


Goal 1: No Poverty

Economically disadvantaged


FN 1.2.1 Proportion of the population living below the poverty line, by gender and age


# Import
SOXOU01_raw <- 
  statgl_url("SOXOU01", lang = language) |>  
  statgl_fetch(
    "inventory variable" = px_all("Andel*"),
    .col_code            = T
    ) |> 
  as_tibble()


# Transform
SOXOU01 <-
  SOXOU01_raw |> 
  mutate(year = year |>  make_date())


# Plot
SOXOU01 |>  
  ggplot(aes(
    x    = year,
    y    = value,
    fill = `inventory variable`
    )) +
  geom_col(position = "dodge") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(guide = guide_legend(nrow = 2)) +
  labs(
    title    = sdg1$figs$fig1$title[language],
    subtitle = sdg1$figs$fig1$sub[language],
    x        = " ",
    y        = " ",
    fill     = sdg1$figs$fig1$fill[language],
    caption  = sdg1$figs$fig1$cap[language]
    )

StatBank

Method

# Transform
SOXOU01 <- 
  SOXOU01_raw |> 
  filter(year >= year(Sys.time()) - 5) |>  
  mutate(year = year %>% fct_inorder()) |> 
  spread(2, 3) |> 
  mutate(`inventory variable` = `inventory variable` |>  str_to_sentence())

# Table
SOXOU01 |> 
  rename(" " = 1) |> 
  statgl_table() |> 
  add_footnote(
    sdg1$figs$fig1$sub[language],
    notation = "symbol")
2020 2021 2022 2023
Fraction below 50% 4,1 4,1 4,4 4,6
Fraction below 60% 7,7 7,7 8,2 8,2
* The proportion of the population with an income below 50% or 60%
of the median income for 3 consecutive years


# Import 
SOXOU01_raw <-
  statgl_url("SOXOU01", lang = language) |> 
  statgl_fetch(
    "inventory variable" = px_all("Andel*"), 
    "gender"             = 1:2, 
    .col_code            = T
    ) |> 
  as_tibble()

# Transform
SOXOU01 <-
  SOXOU01_raw |>  
  mutate(
    year = year |>  make_date(),
    gender = gender |>  fct_inorder()
    )

# Plot
SOXOU01 |> 
  mutate(`inventory variable` = `inventory variable` |>  str_to_sentence()) |> 
  ggplot(aes(
    x    = year,
    y    = value,
    fill = gender
    )) +
  geom_col(position = "dodge") +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 1
    )) +
  facet_wrap(~ `inventory variable`) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg1$figs$fig2$title[language],
    subtitle = sdg1$figs$fig1$sub[language],
    x        = " ",
    y        = " ",
    fill     = " ",
    caption  = sdg1$figs$fig1$cap[language]
    )

StatBank

Method

# Transform
SOXOU01 <-
  SOXOU01_raw |> 
  filter(year >= year(Sys.time()) - 5) |>  
  mutate(year = year |>  fct_inorder()) |>  
  spread(3, 4) |> 
  mutate(`inventory variable` = `inventory variable` |>  str_to_sentence())

# Table
SOXOU01 |> 
  select(-1) |>  
  rename(" " = 1) |>  
  statgl_table() |> 
  pack_rows(index = table(SOXOU01[[1]])) |> 
  add_footnote(
    sdg1$figs$fig1$sub[language],
    notation = "symbol")
2020 2021 2022 2023
Fraction below 50%
Female 3,7 3,8 4,1 4,1
Male 4,5 4,3 4,8 5,0
Fraction below 60%
Female 7,3 7,4 7,7 7,8
Male 8,1 7,9 8,6 8,7
* The proportion of the population with an income below 50% or 60%
of the median income for 3 consecutive years


# Import
SOXOU04_raw <-
  statgl_url("SOXOU04", lang = language) |> 
  statgl_fetch(
    "inventory variable" = px_all("Andel*"),
    "age"                = 2:6, 
    .col_code            = T
    ) |> 
  as_tibble()


# Transform
SOXOU04 <-
  SOXOU04_raw |>  
  mutate(year = year |>  make_date())

# Plot
SOXOU04 |> 
  mutate(`inventory variable` = `inventory variable` |>  str_to_sentence()) |> 
  ggplot(aes(
    x     = year,
    y     = value,
    color = age
    )) +
  geom_line(size = 2) +
  facet_wrap(~ `inventory variable`, scales = "free_y") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() +
  scale_color_statgl(reverse = TRUE) +
  labs(
    title    = sdg1$figs$fig3$title[language],
    subtitle = sdg1$figs$fig3$sub[language],
    x        = " ",
    y        = " ",
    color    = sdg1$figs$fig3$color[language],
    caption  = sdg1$figs$fig3$cap[language]
    )

StatBank

Method

# Transform
SOXOU04 <-
  SOXOU04_raw |> 
  filter(year >= year(Sys.time()) - 5) |> 
  mutate(year = year |>  fct_inorder()) |>  
  spread(3, 4) |> 
  mutate(`inventory variable` = `inventory variable` |>  str_to_sentence())

# Table
SOXOU04 |> 
  select(-1) |>  
  rename(" " = 1) |>  
  statgl_table() |> 
  pack_rows(index = table(SOXOU04[[1]])) |>  
  add_footnote(
    sdg1$figs$fig3$foot[language],
    notation = "symbol")
2020 2021 2022 2023
Fraction below 50%
-29 10,9 10,8 12,3 13,1
30-39 5,0 4,9 5,3 5,3
40-49 3,1 3,1 3,0 3,1
50-60 2,4 2,4 2,6 2,7
60+ 1,5 1,5 1,6 1,7
Fraction below 60%
-29 17,5 17,6 19,2 20,1
30-39 9,0 8,6 9,3 9,3
40-49 5,3 5,4 5,5 5,8
50-60 5,0 4,7 4,9 5,2
60+ 3,5 3,5 3,9 3,8
* Percentage of the population with an income below 50% or 60% of the median income for 3 consecutive years.
The table includes only peoply over 18 years of age.
# Tak til podcasten VELKOMMEN TIL INTERNETTET for god lytter!


Explanation

Note that the population used here is different from the total population. As an example, students and residents of social institutions are not included in the analysis of the economically disadvantaged.



Last update: 20. juni 2025

At-risk-of-poverty rate


FN 1.2.1 Proportion of the population living in relative poverty
# Import
INXIU101_raw <-
  statgl_url("INXIU101", lang = language) |> 
  statgl_fetch(
    indicator = 2:4,
    time      = px_all(),
    .col_code = T
    ) |> 
  as_tibble()

# Transform
INXIU101 <-
  INXIU101_raw |>  
  mutate(
    time = time |>  make_date(),
    indicator = indicator |>  as.factor() |>  fct_rev()
    )

# Plot
INXIU101 |> 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = indicator
    )) +
  geom_area(position = "identity") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1.1,
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(nrow = 3)) +
  labs(
    title   = "At-risk-of-povery rate",
    x       = " ",
    y       = " ",
    fill    = sdg1$figs$fig1$fill[language],
    caption = sdg1$figs$fig4$cap[language]
    )

StatBank

Method

# Transform
INXIU101 <- 
  INXIU101_raw |> 
  filter(time >= year(Sys.time()) - 5) |>  
  mutate(time = time |>  fct_inorder()) |>  
  spread(2, 3)

# Table
INXIU101 |> 
  rename(" " = 1) |>  
  statgl_table() |> 
  add_footnote(
    sdg1$figs$fig1$sub[language],
    notation = "symbol")
2020 2021 2022 2023
At-risk-of-poverty rate. 40 per cent threshold 7,1 8,3 7,8 7,2
At-risk-of-poverty rate. 50 per cent threshold 11,4 13,0 12,1 11,5
At-risk-of-poverty rate. 60 per cent threshold 17,9 18,9 18,4 17,4
* The proportion of the population with an income below 50% or 60%
of the median income for 3 consecutive years
Explanation

Greenland has no official poverty line, however, the at-risk-of-poverty rate (ROP) is often used as an indicator of relative povery in an international context.

The measurement is calculated as the proportion of the population living in a household, in which the disposable household income is below a fixed percentage (40, 50 or 60 pct.) of the median income

Public funds


FN 1.a.2 Proportion of total goverment spending on essential services (education, health and social protection)


# Import
OFXFUNK_raw <-
  statgl_url("OFXFUNK", lang = language) |> 
  statgl_fetch(
    "function" = c(0, 33, 44, 50),
    sector     = c(0, 1, 2),
    .col_code  = T
    ) |> 
  as_tibble()

# Transform
vec        <- 4:6
names(vec) <- trimws(unique(OFXFUNK_raw[[2]]) |>  str_remove_all("[:digit:]\\.") |>  str_remove_all("1 "))[-1]

OFXFUNK <- 
  OFXFUNK_raw |> 
  mutate(value = value |>  replace_na(0)) |>  
  spread(2, 4) |> 
  select(1:2, unique(OFXFUNK_raw[[2]])) |>  
  rename(
    total  = 3,
    sund   = 4,
    under  = 5,
    social = 6
    ) |> 
  mutate(other = total - (sund + under + social)) |> 
  rename(vec) |> 
  select(-3) |> 
  gather(key, value, -(1:2)) |> 
  mutate(
    key    = key |>  str_replace("other", sdg1$figs$fig5$other[language] |>  unlist()),
    key    = key |>  fct_inorder(),
    sector = sector |> fct_inorder(),
    time   = time |>  make_date()
    )

# Plot
OFXFUNK |>  
  ggplot(aes(
    x    = time,
    y    = value,
    fill = key
  )) +
  geom_area(position = "fill") +
  facet_wrap(~ sector) +
  scale_fill_statgl(palette = "spring", reverse = TRUE) +
  theme_statgl() +
  scale_y_continuous(labels = scales::percent_format()) +
  labs(
    title    = sdg1$figs$fig5$title[language],
    subtitle = sdg1$figs$fig5$sub[language],
    x        = " ",
    y        = " ",
    caption  = sdg1$figs$fig5$cap[language],
    fill     = sdg1$figs$fig5$fill[language]
    )

StatBank

# Transform
OFXFUNK <- 
  OFXFUNK_raw |> 
  mutate(value = value |>  replace_na(0)) |>  
  spread(2, 4) |> 
  select(1:2, unique(OFXFUNK_raw[[2]])) |> 
  rename(
    total  = 3,
    sund   = 4,
    under  = 5,
    social = 6
    ) |> 
  mutate(other = total - (sund + under + social)) |> 
  rename(vec) |> 
  select(-3) |> 
  gather(key, value, -(1:2)) |> 
  mutate(
    key = key |>  str_replace("other", sdg1$figs$fig5$other[language] |>  unlist()),
    key    = key |>  str_remove_all("[:digit:]\\.") |>  trimws(),
    key    = key |>  fct_inorder(),
    sector = sector |>  fct_inorder()) |> 
  filter(time >= year(Sys.time()) - 7) |> 
  mutate(time = time |>  fct_inorder()) |> 
  spread(2, 4)


# Table
OFXFUNK |> 
  select(-1) |>  
  rename(" " = 1) |>  
  statgl_table(replace_0s = TRUE) |> 
  pack_rows(index = table(OFXFUNK[[1]])) |>  
  add_footnote(sdg1$figs$fig5$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
General government sector, total
Health 1.657.686 1.643.089 1.956.540 1.818.131 1.796.080 1.855.845
Education 2.008.900 2.027.908 2.049.680 2.065.451 2.119.661 2.715.034
Social protection 3.223.797 3.245.180 3.392.186 3.543.111 3.757.084 3.810.241
Other 4.708.399 4.842.749 5.213.676 5.244.197 5.201.375 5.462.042
Municipalities
Health 0 0 0 0 0 0
Education 947.990 983.324 984.414 1.009.642 1.017.871 1.625.384
Social protection 2.919.461 2.957.896 3.118.637 3.266.656 3.369.543 3.480.952
Other 1.673.757 1.803.593 1.936.280 1.850.960 1.822.418 2.073.529
Selfgovernment
Health 1.657.650 1.643.058 1.956.640 1.818.076 1.797.706 1.855.776
Education 1.149.309 1.146.871 1.086.992 1.074.221 1.126.161 1.107.809
Social protection 851.629 879.461 969.666 860.291 959.355 934.619
Other 3.344.075 3.238.557 3.429.236 3.561.176 3.716.747 3.549.572
* Per thousand DKK


Longterm social security benefits

FN 1.3 Proportion of the population of working age on longterm social security benefits
# Import
ARXLEDVAR_raw <- 
  statgl_url("ARXLEDVAR", lang = language) |> 
  statgl_fetch(
    taar_kvar = px_all(),
    kvar_led  = 1:4,
    opg_var   = "procent",
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ARXLEDVAR <- 
  ARXLEDVAR_raw |>
  mutate(kvar_led = fct_inorder(kvar_led)) |> 
  mutate(taar_kvar = str_replace_all(taar_kvar, "Q", "-")) |> 
  mutate(taar_kvar = yq(taar_kvar))
  
# Plot
ARXLEDVAR |> 
  ggplot(aes(
    x    = taar_kvar,
    y    = value,
    fill = kvar_led
  )) +
  geom_area(position = "fill") +
  scale_x_date() +
  scale_y_continuous(labels = scales::percent_format()) +
  scale_fill_statgl(reverse = T, guide = guide_legend(nrow = 2, byrow = T)) +
  theme_statgl() +
  labs(
    title    = sdg1$figs$fig6$title[language],
    subtitle = sdg1$figs$fig6$sub[language],
    x        = " ",
    y        = " ",
    fill     = sdg1$figs$fig6$fill[language],
    caption  = sdg1$figs$fig6$cap[language]
  )

StatBank

ARXLEDVAR_raw |> 
  select(-opg_var) |> 
  mutate(kvar_led = fct_inorder(kvar_led)) |> 
  filter(taar_kvar >= year(Sys.time()) - 1) |> 
  spread(taar_kvar, value) |> 
  rename(" " = 1) |> 
  statgl_table() |> 
  add_footnote(sdg1$figs$fig6$foot[language], notation = "symbol")
2024Q1 2024Q2 2024Q3 2024Q4 2025Q1
1-3 months 65,5 61,2 59,7 61,1 56,3
4-6 months 19,6 22,7 22,3 20,8 24,1
7-9 months 8,2 10,1 11,2 10,0 10,3
10-12 months 6,8 6,0 6,8 8,0 9,4
* Percentage share