# Loads
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
NRD10_raw <-
pxweb_get_data(
url = "https://bank.stat.gl:443/api/v1/da/Greenland/NR/NRX10.px",
query = list(
"units"=c("1"),
"account"=c("0", "1"),
"time"=c("*")
)
) %>%
as_tibble()
NRD0518_raw <-
pxweb_get(
url = "https://bank.stat.gl/api/v1/da/Greenland/NR/NRX0518.px",
query = list(
"units"=c("1"),
"industry"=c("0"),
"time"=c("*")
)) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
NRD10 <-
NRD10_raw %>%
select(tid, kontonavn, `Udvikling i BNP`) %>%
spread(kontonavn, `Udvikling i BNP`) %>%
rename(BNP = `BNP, mio. kr.`,
`BNP per indbygger` = `Pr. indbygger, i 1.000 kr.`)
NRD0518 <-
NRD0518_raw %>%
select(tid, `Aflønning af ansatte`) %>%
rename(beskæftigede = `Aflønning af ansatte`)
NRD10_NRD0518 <-
NRD10 %>%
left_join(NRD0518) %>%
mutate(`BNP per beskæftigede` = BNP / beskæftigede * 1000) %>%
select(tid, `BNP per indbygger`) %>%
gather(Kontonavn, tusinde_kroner, -tid) %>%
mutate(pct = ((tusinde_kroner - lag(tusinde_kroner))/lag(tusinde_kroner))*100) %>%
mutate(pct_log = (log(tusinde_kroner) - lag(log(tusinde_kroner)))*100,
tid = strtoi(tid)) %>%
filter(tid > 2003)
# Plot
NRD10_NRD0518_plot <-
NRD10_NRD0518 %>%
ggplot(aes(x = tid, y = pct, fill = Kontonavn)) +
geom_col(position = "dodge") +
scale_fill_statgl() + theme_statgl() +
scale_y_continuous(labels = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
decimal.mark = ",")) +
labs(
title = "Realvæksten i BNP",
subtitle = "2010-priser, kædede værdier",
x = " ",
y = "Årlig procentvis ændring",
fill = NULL,
caption = "Kilde: https://bank.stat.gl/NRD10 \n https://bank.stat.gl/NRD0518"
)
NRD10_NRD0518_plot
# Loads
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
ARDBFB5_raw <-
pxweb_get(
url = "https://bank.stat.gl/api/v1/da/Greenland/AR/AR30/ARXBFB5.px",
query = list(
"time" = c("*"),
"municipality" = c("0"),
"place of residence" = c("0"),
"gender" = c("0"),
"age" = c("0"),
"place of birth" = c("0"),
"inventory variable" = c("4")
)) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
ARDBFB5 <-
ARDBFB5_raw %>%
mutate_if(is.factor, as.character) %>%
mutate(tid = as.numeric(tid) %>% make_date())
# Plot
ARDBFB5_plot <-
ARDBFB5 %>%
ggplot(
aes(
x = tid,
y = `Hovedbeskæftigelse og beskæftigelsesgrad blandt fastboende`,
color = opgørelsesvariabel
)
) +
geom_line(size = 2) +
scale_y_continuous(labels = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
decimal.mark = ",")) +
theme_statgl() + scale_fill_statgl() +
theme(legend.position = "none") +
labs(
title = "Beskæftigelsesgraden",
subtitle = "Beskæftigelse i gennemsnit per måned i forhold til samlet befolkning",
x = " ",
y = " ",
color = "Opgørelsesvariabel",
caption = "Kilde: https://bank.stat.gl/ARDBFB5"
)
ARDBFB5_plot
# Loads
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
ARDLED4_raw <-
pxweb_get(
url = "https://bank.stat.gl/api/v1/da/Greenland/AR/AR40/ARXLED4.px",
query = list(
"time"=c("*"),
"quarter"=c("0"),
#"district"=c("*"),
"place of residence"=c("*"),
"age"=c("*"),
"gender"=c("*")
)) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
ARDLED4 <-
ARDLED4_raw %>%
mutate_if(is.factor, as.character) %>%
mutate(tid = as.numeric(tid) %>% make_date())
# Plot
ARDLED4_plot <-
ARDLED4 %>%
filter(
bosted == "Alle",
alder == "Alle (18-65 år)",
køn == "Alle"
) %>%
ggplot(aes(x = tid, y = `Ledighedsprocent i gennemsnit pr. måned blandt fastboende 18-65-årige`, color = bosted)) +
geom_line(size = 2) +
theme_statgl() + scale_color_statgl() +
theme(legend.position = "none") +
scale_y_continuous(labels = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
decimal.mark = ",")) +
labs(
title = "Ledighedsprocent",
subtitle = "Ledighed i gennemsnit pr. måned blandt fastboende, 18-65-årige",
x = " ",
y = " ",
color = " ",
caption = "Kilde: https://bank.stat.gl/ARDLED4"
)
ARDLED4_plot
# Loads
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
ARDLED4_3_raw <-
pxweb_get(
url = "https://bank.stat.gl/api/v1/da/Greenland/AR/AR40/ARXLED4.px",
query = list(
"time"=c("*"),
"quarter"=c("0"),
#"district"=c("*"),
"place of residence"=c("*"),
"age"=c("*"),
"gender"=c("*")
)) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
ARDLED4_3 <-
ARDLED4_3_raw %>%
mutate_if(is.factor, as.character) %>%
mutate(tid = as.numeric(tid) %>% make_date())
# Plot
ARDLED4_3_plot <-
ARDLED4_3 %>%
filter(
bosted == "Alle",
alder != "Alle (18-65 år)",
køn == "Alle"
) %>%
ggplot(aes(x = tid, y = `Ledighedsprocent i gennemsnit pr. måned blandt fastboende 18-65-årige`, color = alder)) +
geom_line(size = 2) +
theme_statgl() + scale_color_statgl() +
scale_y_continuous(labels = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
decimal.mark = ",")) +
labs(
title = "Ledighedsprocent efter aldersgrupper",
subtitle = "Ledighed i gennemsnit pr. måned blandt fastboende",
x = " ",
y = " ",
color = " ",
caption = "Kilde: https://bank.stat.gl/ARDLED4"
)
ARDLED4_3_plot
# Loads
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
ARDLED4_2_raw <-
pxweb_get(
url = "https://bank.stat.gl/api/v1/da/Greenland/AR/AR40/ARXLED4.px",
query = list(
"time"=c("*"),
"quarter"=c("0"),
#"district"=c("*"),
"place of residence"=c("*"),
"age"=c("*"),
"gender"=c("*")
)) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
ARDLED4_2 <-
ARDLED4_2_raw %>%
mutate_if(is.factor, as.character) %>%
mutate(tid = as.numeric(tid) %>% make_date())
# Plot
ARDLED4_2_plot <-
ARDLED4_2 %>%
filter(
bosted != "Alle",
alder == "Alle (18-65 år)",
køn == "Alle"
) %>%
ggplot(aes(x = tid, y = `Ledighedsprocent i gennemsnit pr. måned blandt fastboende 18-65-årige`, color = bosted)) +
geom_line(size = 2) +
theme_statgl() + scale_color_statgl() +
scale_y_continuous(labels = scales::percent_format(scale = 1, accuracy = 1, big.mark = ".",
decimal.mark = ",")) +
labs(
title = "Ledighedsprocent efter bosted",
subtitle = "Ledighed i gennemsnit pr. måned blandt fastboende 18-65-årige",
x = " ",
y = " ",
color = " ",
caption = "Kilde: https://bank.stat.gl/ARDLED4"
)
ARDLED4_2_plot
# Loads
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
NRD09_raw <-
pxweb_get(url = "https://bank.stat.gl/api/v1/da/Greenland/NR/NRX09.px",
query = list("units"=c("0"),
"account"=c("6"),
"time"=c("*"))) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
NRD10_raw <-
pxweb_get(url = "https://bank.stat.gl/api/v1/da/Greenland/NR/NRX10.px",
query = list("units"=c("0"),
"account"=c("0"),
"time"=c("*"))) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
NRD09_NRD10 <-
NRD09_raw %>% left_join(NRD10_raw %>% select(tid, `Udvikling i BNP`)) %>%
mutate(pct = Investeringer / `Udvikling i BNP`,
tid = strtoi(tid) %>% make_date())
# Plot
NRD09_NRD10_plot <-
NRD09_NRD10%>%
ggplot(aes(x = tid, y = pct, fill = konto)) +
geom_col() +
scale_y_continuous(labels = scales::percent_format(scale = 100, accuracy = 1, big.mark = ".",
decimal.mark = ",")) +
theme_statgl() + scale_fill_statgl() +
theme(legend.position = "none") +
labs(
title = "Udgifter til forskning og udvikling",
subtitle = "Løbende priser",
x = " ",
y = "Procentvis andel af BNP",
caption = "Kilde: https://bank.stat.gl/NRD09 \n https://bank.stat.gl/NRD10"
)
NRD09_NRD10_plot
library("pxweb")
library("tidyverse")
library("statgl")
library("lubridate")
# Import
TUDUPAX_raw <-
pxweb_get(
url = "https://bank.stat.gl/api/v1/da/Greenland/TU/TU20/TUXUPAX.px",
query = list(
"airport" = c("*"),
"month" = c("0"),
"time" = c("*")
)) %>%
as.data.frame(column.name.type = "text", variable.value.type = "text") %>%
as_tibble()
# Transform
TUDUPAX <-
TUDUPAX_raw %>%
mutate_if(is.factor, as.character) %>%
mutate(
tid = as.numeric(tid) %>% make_date(),
`Antal udenrigspassagerer på rutefly` =
(`Antal udenrigspassagerer på rutefly` * 10^-3)
)
# Plot
TUDUPAX_plot <-
TUDUPAX %>%
filter(lufthavn == "I alt") %>%
ggplot(aes(x = tid,
y = `Antal udenrigspassagerer på rutefly`)) +
geom_col(fill = statgl:::statgl_cols("darkblue")) +
theme_statgl() + scale_fill_statgl() +
theme(plot.margin = margin(10, 10, 10, 10)) +
labs(
title = "Udenrigspassagerer på rutefly",
x = " ",
y = "Tusinde personer",
caption = "Kilde: https://bank.stat.gl/TUDUPAX"
)
TUDUPAX_plot