Tilbage


Delmål 4: Kvalitetsuddannelse

Børn i dagtilbud, 3-5 år


FN 4.2.2 Antal børn i dagtilbud (3-5 år)
# Import
OFXUKN1_raw <-
  statgl_url("OFXUKN1", lang = language) %>% 
  statgl_fetch(
    born_var   = 3:5,
    inst_type2 = 1:5,
    .col_code  = TRUE
    ) %>% 
  as_tibble()

# Transform
OFXUKN1 <-
  OFXUKN1_raw %>% 
  mutate(across(where(is.integer), ~ if_else(is.na(.x), 0, .x))) |> 
  summarise(value = sum(value), .by = c(inst_type2, aar)) |> 
  mutate(
    aar = aar %>% make_date(),
    inst_type2 = inst_type2 %>% fct_inorder(),
    alder = "Børn 3-5 år"
    )

# Plot
OFXUKN1 %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = inst_type2
  )) +
  geom_col() +
  scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = FALSE, nrow = 2)) +
  labs(
    title    = sdg4$figs$fig1$title[language],
    subtitle = OFXUKN1[[4]][1],
    x        = " ",
    y        = sdg4$figs$fig1$y_lab[language],
    fill     = " ",
    caption  = sdg4$figs$fig1$cap[language]
  )

Statistikbanken


# Transform
OFXUKN1 <-
  OFXUKN1_raw %>% 
  #arrange(desc(time)) %>% 
  filter(aar >= year(Sys.time()) - 5) %>% 
  mutate(across(where(is.integer), ~ if_else(is.na(.x), 0, .x))) |> 
  summarise(value = sum(value), .by = c(inst_type2, aar)) |> 
  mutate(
    aar = aar %>% factor(levels = unique(aar)),
    inst_type2 = inst_type2 %>% fct_inorder(),
    alder = "Børn 3-5 år"
    ) %>% 
  spread(aar, value)

# Table
OFXUKN1 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = table(OFXUKN1[[2]])) %>% 
  add_footnote(
    sdg4$figs$fig1$foot[language], 
    notation = "symbol"
    )
2020 2021 2022 2023 2024
Børn 3-5 år
Vuggestue 52 102 149 189 151
Børnehave 1.917 1.943 1.876 1.869 1.895
Intergrede institutioner 19 21 27 10 4
Dagplejer 104 120 114 115 130
Andre offentlige dagtilbud 6 9 5 18 3
* Antal børn i dagtilbud
# Import
OFXUKN1_raw <-
  statgl_url("OFXUKN1", lang = language) %>% 
  statgl_fetch(
    born_var   = 3:5,
    inst_type2 = 1:5,
    bosted     = 1:2,
    .col_code  = TRUE
    ) %>% 
  as_tibble()

# Transform
OFXUKN1 <-
  OFXUKN1_raw %>% 
  mutate(
    inst_type2 = inst_type2 %>% fct_inorder(),
    bosted  = bosted %>% fct_inorder(),
    aar = aar %>% make_date(),
    born_var = "Børn 3-5 år",
    across(where(is.integer), ~ if_else(is.na(.x), 0, .x))
    ) |> 
  summarise(value = sum(value), .by = c(inst_type2, born_var, bosted, aar))

# Plot
OFXUKN1 %>% 
  ggplot(aes(
    x    = aar,
    y    = value,
    fill = inst_type2
    )) +
  geom_col() +
  facet_wrap(~ bosted, scales = "free_y") +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = FALSE, nrow = 2)) +
  labs(
    title    = sdg4$figs$fig2$title[language],
    subtitle = OFXUKN1[[2]][1],
    x        = " ",
    y        = sdg4$figs$fig2$y_lab[language],
    fill     = NULL,
    caption  = sdg4$figs$fig2$cap[language]
  )

Statistikbanken

# Transform
OFXUKN1 <- 
  OFXUKN1_raw %>% 
  mutate(born_var = "Børn 3-5 år",
    across(where(is.integer), ~ if_else(is.na(.x), 0, .x))) |> 
  #arrange(desc(time)) %>%
  summarise(value = sum(value), .by = c(inst_type2, born_var, bosted, aar)) |> 
  filter(aar >= year(Sys.time()) - 5) %>% 
  mutate(aar = aar %>% factor(levels = unique(aar))) %>% 
  spread(aar, value) |> 
  arrange(bosted)

# Table
OFXUKN1 %>% 
  select(-c(2, 3)) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = table(OFXUKN1[[2]])) %>% 
  pack_rows(index = table(OFXUKN1[[3]])) %>% 
  add_footnote(
    sdg4$figs$fig2$foot[language], 
    notation = "symbol"
    )
2020 2021 2022 2023 2024
Børn 3-5 år
By
Andre offentlige dagtilbud 6 9 5 18 3
Børnehave 1.856 1.885 1.815 1.790 1.833
Dagplejer 10 11 17 9 7
Intergrede institutioner 0 0 0 0 0
Vuggestue 47 94 133 178 140
Bygd
Andre offentlige dagtilbud 0 0 0 0 0
Børnehave 61 58 61 79 62
Dagplejer 94 109 97 106 123
Intergrede institutioner 19 21 27 10 4
Vuggestue 5 8 16 11 11
* Antal børn i dagtilbud

Trintest-resultater


FN 4.1.1 Løsningssikkerhed for trintests i folkeskolens 3. og 7. klasse
# Import
UDXTKB_raw <-
  statgl_url("UDXTKB", lang = language) %>%
  statgl_fetch(
    subject   = px_all(),
    grade     = c(3, 7),
    unit      = "B",
    .col_code = TRUE) %>% 
  as_tibble()

# Transform
UDXTKB <-
  UDXTKB_raw %>% 
  mutate(
    time     = time %>% make_date(),
     subject =  subject %>% fct_inorder()
    )

# Plot
UDXTKB %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = subject
    )) +
  geom_line(size = 2) +
  facet_wrap(~ grade) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = sdg4$figs$fig3$title[language],
    subtitle = UDXTKB[[3]][1],
    x        = " ",
    y        = " ",
    color    = sdg4$figs$fig3$color[language],
    caption  = sdg4$figs$fig3$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTKB <- 
  UDXTKB_raw %>% 
  arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  arrange(grade, desc(subject)) %>% 
  unite(combi, 1, 2, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(1, ncol(.))

vec      <- UDXTKB %>% select(-(1:2)) %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- table(vec[c(F, T)])
col_vec  <- vec[c(T, F)]

# Table
UDXTKB %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  pack_rows(index = table(UDXTKB[[1]]))
  1. klasse
  1. klasse
Matematik,3. klasse Grønlandsk,3. klasse Engelsk,3. klasse Dansk,3. klasse Matematik,7. klasse Grønlandsk,7. klasse Engelsk,7. klasse Dansk,7. klasse
Løsningssikkerhed (pct. rigtige)
2024 49 45 NA 41 40 56 84 42
2023 52 48 NA 48 41 59 86 45
2022 48 41 NA 41 41 62 82 51
2021 51 48 NA 47 40 61 73 50
2020 51 41 NA 50 41 61 73 57



# Import
UDXTKB_raw <-
  statgl_url("UDXTKB", lang = language) %>%
  statgl_fetch(
    subject              = px_all(),
    grade                = c(3, 7),
    unit                 = "B",
    "place of residence" = 1:2,
    .col_code            = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTKB <-
  UDXTKB_raw %>% 
  mutate(
    time = time %>% make_date(),
    `place of residence` = `place of residence` %>% fct_inorder(),
    subject = subject %>% fct_inorder()
    )

# Plot
UDXTKB %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = subject
  )) +
  geom_line(size = 2) +
  facet_grid(grade ~ `place of residence`) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = sdg4$figs$figX$title_fig4,
    subtitle = UDXTKB[[4]][1],
    x        = " ",
    y        = " ",
    color    = sdg4$figs$fig4$color[language],
    caption  = sdg4$figs$fig4$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTKB <- 
  UDXTKB_raw %>% 
  arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% fct_inorder()) %>% 
  arrange(grade, subject) %>% 
  unite(combi, 1, 2, 3, sep = ",") %>% 
  mutate(combi = combi %>% factor(levels = unique(combi))) %>% 
  spread(1, 4) 

vec       <- UDXTKB[-(1:2)] %>% colnames() %>% str_split(",") %>% unlist()
head_vec1 <- rep(vec[c(F, T, F)][1:8] %>% table(), 2)
head_vec2 <- vec[c(F, F, T)] %>% table()
col_vec   <- vec[c(T, F, F)]

UDXTKB %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  add_header_above(c(" ", head_vec1)) %>% 
  add_header_above(c(" ", head_vec2)) %>% 
  pack_rows(index = table(UDXTKB[[1]]))
  1. klasse
  1. klasse
Dansk
Engelsk
Grønlandsk
Matematik
Dansk
Engelsk
Grønlandsk
Matematik
By,Dansk,3. klasse Bygd,Dansk,3. klasse By,Engelsk,3. klasse Bygd,Engelsk,3. klasse By,Grønlandsk,3. klasse Bygd,Grønlandsk,3. klasse By,Matematik,3. klasse Bygd,Matematik,3. klasse By,Dansk,7. klasse Bygd,Dansk,7. klasse By,Engelsk,7. klasse Bygd,Engelsk,7. klasse By,Grønlandsk,7. klasse Bygd,Grønlandsk,7. klasse By,Matematik,7. klasse Bygd,Matematik,7. klasse
Løsningssikkerhed (pct. rigtige)
2024 42 38 NA NA 43 48 48 56 45 34 86 55 55 57 39 40
2023 50 36 NA NA 48 49 53 45 47 40 88 73 57 66 43 40
2022 41 43 NA NA 41 52 47 52 54 40 86 53 62 61 41 39
2021 48 39 NA NA 48 47 52 50 52 45 76 54 59 62 40 41
2020 50 52 NA NA 41 57 50 51 59 43 78 41 61 62 42 37



Folkeskolens afgangseksamen


GS Prøvekarakterer for folkeskolens afgangselever
# Import
UDXFKK_raw <-
  statgl_url("UDXFKK", lang = language) %>% 
  statgl_fetch(
    unit             = "andel",
    grade            = "FO",
    subject          = c("01", "02", "03", "04"),
    "type of grades" = 56:58,
    .col_code        = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  mutate(
    `type of grades` = `type of grades` %>% str_remove_all("Prøvekarakter -") %>% trimws() %>% str_to_title(),
    subject          = subject %>% fct_inorder(),
    time             = time %>% make_date()
    )

# Plot
UDXFKK %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = `type of grades`
    )) +
  geom_line(size = 2) +
  facet_wrap( ~ subject, ncol = 2) +
  theme_statgl() + 
  scale_color_statgl(guide = guide_legend(nrow = 3)) +
  labs(
    title   = sdg4$figs$fig5$title[language],
    color   = sdg4$figs$fig5$color[language],
    x       = " ",
    y       = sdg4$figs$fig5$y_lab[language],
    caption = sdg4$figs$fig5$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXFKK <-
  UDXFKK_raw %>% 
  mutate(
    `type of grades` = `type of grades` %>% 
      str_remove_all("Prøvekarakter -") %>%
      trimws() %>%
      str_to_title()
    ) %>% 
  #arrange(desc(time)) %>% 
  filter(
    value != "NA",
    time >= year(Sys.time()) - 5
    ) %>% 
  mutate(
    subject = subject %>% fct_inorder(),
    time = time %>% factor(levels = unique(time)),
    ) %>% 
  spread(5, 6) %>% 
  arrange(subject)

# Table
UDXFKK %>% 
  select(-(1:3)) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(UDXFKK[[1]] %>% str_to_title())) %>% 
  pack_rows(index = table(UDXFKK[[3]])) %>% 
  add_footnote(UDXFKK[[2]][1], notation = "symbol")
2021 2022 2023 2024
Karaktergennemsnit
Grønlandsk
Færdighedsprøve 3,56 3,72 3,99 4,86
Mundtlig 5,96 6,81 6,54 6,80
Skriftlig 5,35 5,48 4,75 5,30
Dansk
Færdighedsprøve 4,47 4,14 4,05 3,70
Mundtlig 5,36 4,85 6,15 4,63
Skriftlig 3,36 3,58 3,82 3,18
Matematik
Færdighedsprøve 4,94 4,89 4,82 4,81
Mundtlig 4,88 5,24 5,58 5,60
Skriftlig 2,17 2,52 2,98 2,48
Engelsk
Færdighedsprøve 4,90 5,20 5,56 5,63
Mundtlig 6,49 6,52 6,99 7,55
Skriftlig 4,11 4,51 4,56 5,34
* Folkeskolens afgangselever


På grund af Covid-19 har der ikke været afholdt afgangseksamen i 2020.



Overgang fra folkeskole til videre uddannelse


GS Overgang fra folkeskolen til ungdomsuddannelse
# Import
UDXTRFA1_raw <-
  statgl_url("UDXTRFA1", lang = language) %>% 
  statgl_fetch(
    aar       = 2,
    status    = px_all(),
    dim_aar   = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTRFA1 <-
  UDXTRFA1_raw %>%
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% make_date())

  


# Plot
UDXTRFA1 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  scale_fill_statgl(reverse = TRUE) +
  theme_statgl() +
  labs(
    title    = sdg4$figs$fig6$title[language],
    subtitle = sdg4$figs$fig6$sub[language],
    x        = sdg4$figs$fig6$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig6$fill[language],
    caption  = sdg4$figs$fig6$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRFA1 <- 
  UDXTRFA1_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  #arrange(desc(`graduation year`)) %>% 
  filter(dim_aar >= year(Sys.time()) - 8) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(3, 4)

# Table
UDXTRFA1 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  add_footnote(
    sdg4$figs$fig6$foot[language],
    notation = "symbol"
  )
2017 2018 2019 2020 2021 2022
Afbrudt 117 108 82 96 97 116
Aktiv 264 243 250 269 252 226
Ej påbegyndt 301 340 311 312 357 330
Gennemført 4 7 5 7 3 6
* Antal personer, overgang fra folkeskolen til ungdomsuddannelse (2 år efter folkeskolens afgangsprøve).



# Import
UDXTRFA1_raw <-
  statgl_url("UDXTRFA1", lang = language) %>% 
  statgl_fetch(
    aar       = 2,
    status    = px_all(),
    dim_aar   = px_all(),
    sex       = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTRFA1 <-
  UDXTRFA1_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% make_date())

# Plot
UDXTRFA1 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  facet_wrap(~ sex) +
  scale_y_continuous(labels  = scales::percent_format()) +
  scale_fill_statgl(reverse = TRUE) +
  theme_statgl() +
  labs(
    title    = sdg4$figs$fig7$title[language],
    subtitle = sdg4$figs$fig7$sub[language],
    x        = sdg4$figs$fig7$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig7$fill[language],
    caption  = sdg4$figs$fig7$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRFA1 <- 
  UDXTRFA1_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) %>% 
  #arrange(desc(`graduation year`)) %>% 
  filter(dim_aar >= year(Sys.time()) - 8) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(4, 5) %>% 
  arrange(status)
  
# Table
UDXTRFA1 %>% 
  select(-1, -3) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = table(UDXTRFA1[[3]])) %>% 
  add_footnote(
    sdg4$figs$fig7$foot[language],
    notation = "symbol"
  )
2017 2018 2019 2020 2021 2022
Afbrudt
Kvinder 64 63 37 51 53 71
Mænd 53 45 45 45 44 45
Aktiv
Kvinder 153 142 148 150 141 132
Mænd 111 101 102 119 111 94
Ej påbegyndt
Kvinder 148 169 137 142 176 161
Mænd 153 171 174 170 181 169
Gennemført
Kvinder 1 0 2 0 1 0
Mænd 3 7 3 7 2 6
* Antal personer, overgang fra folkeskolen til ungdomsuddannelse (2 år efter folkeskolens afgangsprøve).



Overgang fra gymnasium til videre uddannelse


GS Overgang fra gymnasial uddannelse til videre uddannelse
# Import
UDXTRGU2_raw <-
  statgl_url("UDXTRGU2", lang = language) %>% 
  statgl_fetch(
    aar     = 2,
    status  = px_all(),
    dim_aar = px_all(),
    .col_code = TRUE) %>% 
  as_tibble()

# Transform
UDXTRGU2 <-
  UDXTRGU2_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 2) |> 
  mutate(dim_aar = dim_aar %>% make_date())

# Plot
UDXTRGU2 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
    )) +
  geom_col(position = "fill") +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 100, 
    accuracy = 1, 
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg4$figs$fig8$title[language],
    subtitle = sdg4$figs$fig8$sub[language],
    x        = sdg4$figs$fig8$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig8$fill[language],
    caption  = sdg4$figs$fig8$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRGU2 <-
  UDXTRGU2_raw %>% 
  filter(dim_aar >= year(Sys.time()) - 9 & dim_aar < year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(3, 4)

# Table
UDXTRGU2 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  add_footnote(
    sdg4$figs$fig8$foot[language],
    notation = "symbol"
    )
2016 2017 2018 2019 2020 2021
Afbrudt 69 61 46 50 54 67
Aktiv 157 134 137 131 112 124
Ej påbegyndt 91 104 89 87 93 95
Gennemført 28 29 32 35 36 26
* Antal personer, overgang fra folkeskolen til ungdomsuddannelse (2 år efter folkeskolens afgangsprøve).



# Import
UDXTRGU2_raw <-
  statgl_url("UDXTRGU2", lang = language) %>% 
  statgl_fetch(
    aar       = 2,
    status    = px_all(),
    dim_aar   = px_all(),
    sex       = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXTRGU2 <- 
  UDXTRGU2_raw %>% 
  filter(dim_aar <= year(Sys.time()) - 3) |> 
  mutate(dim_aar = dim_aar %>% make_date())

# Plot
UDXTRGU2 %>% 
  ggplot(aes(
    x    = dim_aar,
    y    = value,
    fill = status
  )) +
  geom_col(position = "fill") +
  facet_wrap( ~ sex) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg4$figs$fig9$title[language],
    subtitle = sdg4$figs$fig9$sub[language],
    x        = sdg4$figs$fig9$x_lab[language],
    y        = " ",
    fill     = sdg4$figs$fig9$fill[language],
    caption  = sdg4$figs$fig9$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXTRGU2 <-
  UDXTRGU2_raw %>% 
  #arrange(desc(`graduation year`)) %>% 
  filter(dim_aar >= year(Sys.time()) - 8 & dim_aar < year(Sys.time()) - 3) %>% 
  mutate(dim_aar = dim_aar %>% factor(levels = unique(dim_aar))) %>% 
  spread(4, 5) %>% 
  arrange(status)

# Table
UDXTRGU2 %>% 
  select(-c(1, 3)) %>% 
  rename("  " = 1) %>% 
  statgl_table(replace_0s = TRUE) %>% 
  pack_rows(index = UDXTRGU2[[3]] %>% table()) %>% 
  add_footnote(
    sdg4$figs$fig9$foot[language],
    notation = "symbol"
  )
2017 2018 2019 2020 2021
Afbrudt
Kvinder 39 33 34 31 46
Mænd 22 13 16 23 21
Aktiv
Kvinder 73 85 82 80 91
Mænd 61 52 49 32 33
Ej påbegyndt
Kvinder 53 51 38 49 58
Mænd 51 38 49 44 37
Gennemført
Kvinder 19 19 26 24 14
Mænd 10 13 9 12 12
* Antal personer, overgang fra gymnasium til ungdomsuddannelse (2 år efter studentereksamen).

Aktive studerende i uddannelse


GS Antal aktive studerende i uddannelse efter uddannelsesniveau og land
# Import
UDXISC11B_raw <-
  statgl_url("UDXISC11B", lang = language) %>% 
  statgl_fetch(
    isced = px_all(),
    .col_code            = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  mutate(taar = taar %>% make_date(),
        isced = isced %>%  fct_inorder() %>% fct_rev(),
        value = value * 10^-3)

# Plot
UDXISC11B %>% 
  ggplot(aes(
    x    = taar,
    y    = value,
    fill = isced
  )) +
  geom_col() +
   guides(fill = guide_legend(nrow = 4, byrow = TRUE)) +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = FALSE)) +
  labs(
    title   = sdg4$figs$fig10$title[language],
    x       = " ",
    y       = sdg4$figs$fig10$y_lab[language],
    fill    = NULL,
    caption = sdg4$figs$fig10$cap[language]
  )

Statistikbanken


# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  #arrange(desc(time)) %>% 
  filter(taar >= year(Sys.time()) - 6) %>% 
  mutate(
         isced = isced %>% factor(levels = unique(isced)),
         taar  = taar %>% factor(levels = unique(taar)),
         ) %>% 
  spread(2, 3)

# Table
UDXISC11B %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig10$foot[language],
    notation = "symbol"
    )
2019 2020 2021 2022 2023 2024
Gymnasial uddannelse 1.120 1.170 1.161 1.129 1.064 1.071
Erhvervsuddannelse 1.087 1.136 1.025 1.001 921 876
Suppleringskurser 29 29 14 19 22 26
Kort videregående uddannelse 186 167 155 162 155 162
Bacheloruddannelse 323 373 359 346 333 353
Professionsbacheloruddannelse 561 550 527 528 511 528
Kandidatuddannelse 182 170 165 155 154 150
* Antal personer, aktive studerende i uddannelse.



# Import
UDXISC11B_raw <-
  statgl_url("UDXISC11B", lang = language) %>% 
  statgl_fetch(
    skoleomr   = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Translate
UDXISC11B <-
  UDXISC11B_raw %>% 
  mutate(
    taar     = taar %>% make_date(),
    skoleomr = skoleomr %>% fct_reorder(value),
    value    = value * 10^-3
    )

# Plot
UDXISC11B %>% 
  ggplot(aes(
    x    = taar,
    y    = value,
    fill = skoleomr
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title   = sdg4$figs$fig11$title[language],
    x       = " ",
    y       = sdg4$figs$fig11$y_lab[language],
    fill    = " ",
    caption = sdg4$figs$fig11$cap[language] 
  )

Statistikbanken


# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  #arrange(desc(time)) %>% 
  filter(taar >= year(Sys.time()) - 6) %>% 
  mutate(
    taar    = taar %>% fct_inorder(),
    skoleomr = skoleomr %>% fct_inorder
    ) %>% 
  spread(2, 3)

# Table
UDXISC11B %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig11$foot[language],
    notation = "symbol"
    )
2019 2020 2021 2022 2023 2024
Skoler i Grønland 2.945 3.061 2.922 2.806 2.638 2.580
Skoler i Danmark 518 510 464 512 506 569
Skoler i udlandet 25 24 20 22 16 17
* Antal personer, aktive studerende i uddannelse.



FN 4.3.1 Antal aktive studerende i uddannelse efter køn
# Import
UDXISC11B_raw <-
  statgl_url("UDXISC11B", lang = language) %>% 
  statgl_fetch(
    sex       = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  mutate(
    taar  = taar %>% make_date(),
    sex   = sex %>% reorder(value),
    value = value * 10^-3
    )

# Plot
UDXISC11B %>% 
  ggplot(aes(
    x    = taar,
    y    = value,
    fill = sex
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl() +
  labs(
    title   = sdg4$figs$fig12$title[language],
    x       = " ",
    y       = sdg4$figs$fig12$y_lab[language],
    fill    = " ",
    caption = sdg4$figs$fig12$cap[language]
  )

Statistikbanken


# Transform
UDXISC11B <-
  UDXISC11B_raw %>% 
  #arrange(desc(time)) %>% 
  filter(taar >= year(Sys.time()) - 6) %>% 
  mutate(taar = taar %>% fct_inorder()) %>% 
  spread(2, 3)

# Table
UDXISC11B %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig12$foot[language],
    notation = "symbol"
    )
2019 2020 2021 2022 2023 2024
Kvinder 2.118 2.232 2.117 2.109 2.010 2.006
Mænd 1.370 1.363 1.289 1.231 1.150 1.160
* Antal personer, aktive studerende i uddannelse.



Fuldførte uddannelser


GS Antal fuldførte uddannelsesforløb
# Import
UDXISC11D_raw <-
  statgl_url("UDXISC11D", lang = language) %>% 
  statgl_fetch(
    Isced     = px_all(),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11D <-
  UDXISC11D_raw %>%
  mutate(
    slutaar              = slutaar %>% make_date(),
    id                   = row_number(),
    Isced = Isced %>% str_remove("uddannelse"),
    Isced = Isced %>% fct_reorder(id, .fun = min, na.rm = TRUE) %>% fct_rev()
  )

# Plot
UDXISC11D %>% 
  ggplot(aes(
    x    = slutaar,
    y    = value,
    fill = Isced
    )) +
  geom_col() +
  scale_y_continuous(labels = scales::number_format(
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ",")) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE, nrow = 4)) +
  labs(
    title    = sdg4$figs$fig13$title[language],
    subtitle = sdg4$figs$fig13$sub[language],
    x        = " ",
    y        = sdg4$figs$fig13$y_lab[language],
    fill     = sdg4$figs$fig13$fill[language],
    caption  = sdg4$figs$fig13$cap[language] 
  )

Statistikbanken

Metode


# Transform
UDXISC11D <- 
  UDXISC11D_raw %>% 
  #arrange(desc(time)) %>% 
  filter(slutaar >= year(Sys.time()) - 6) %>% 
  mutate(
    Isced    = Isced %>% fct_inorder(),
    slutaar  = slutaar %>% fct_inorder()
    ) %>% 
  spread(2, 3)

# Table
UDXISC11D %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig13$foot[language],
    notation = "symbol"
    )
2019 2020 2021 2022 2023 2024
Gymnasial uddannelse 314 310 318 282 333 293
Erhvervsuddannelse 399 411 448 376 403 362
Suppleringskurser 111 125 141 119 99 89
Kort videregående uddannelse 55 68 66 62 62 62
Bacheloruddannelse 53 47 54 55 56 53
Professionsbacheloruddannelse 129 107 119 103 88 95
Kandidatuddannelse 35 40 35 32 35 28
* Antal personer, højest fuldførte uddannelsesforløb.



# Import
UDXISC11D_raw <-
  statgl_url("UDXISC11D", lang = language) %>% 
  statgl_fetch(
    Isced     = px_all(),
    sex       = px_all(),
    skoleomr  = c("A_SG", "B_SD"),
    .col_code = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISC11D <- 
  UDXISC11D_raw %>% 
  mutate(
    Isced    = Isced %>% str_remove("uddannelse") %>% trimws(),
    Isced    = Isced %>% fct_inorder() %>% fct_rev(),
    sex      = sex  %>% fct_inorder(),
    skoleomr = skoleomr %>% fct_inorder,
    slutaar  = slutaar    %>% make_date()
  )

# Plot
UDXISC11D %>% 
  ggplot(aes(
    x = slutaar,
    y = value, 
    fill = Isced
  )) +
  geom_col() +
  facet_grid(skoleomr ~ sex, 
             scales = "free_y") +
  scale_y_continuous(labels = scales::number_format(
    accuracy = 1, 
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() +
  scale_fill_statgl(reverse = TRUE, 
                    guide = guide_legend(reverse = TRUE, nrow = 4)) +
  labs(
    title    = sdg4$figs$fig14$title[language],
    subtitle = sdg4$figs$fig14$sub[language],
    x        = " ",
    y        = sdg4$figs$fig14$y_lab[language],
    fill     = sdg4$figs$fig14$fill[language],
    caption  = sdg4$figs$fig14$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXISC11D <- 
  UDXISC11D_raw %>% 
  #arrange(desc(time)) %>% 
  filter(slutaar >= year(Sys.time()) - 4) %>% 
  mutate(
    slutaar  = slutaar %>% fct_inorder(),
    Isced    = Isced %>% fct_inorder(),
    skoleomr = skoleomr %>% fct_inorder()
    ) %>% 
  unite(combi, 2, 4, sep = ",") %>%  
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(2, 4)

vec      <- UDXISC11D[-(1:2)] %>% colnames() %>% str_split(",") %>% unlist()
head_vec <- table(vec[c(F, T)]) %>% rev()
col_vec  <- vec[c(T, F)]

# Table
UDXISC11D %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec)) %>% 
  pack_rows(index = table(UDXISC11D[[1]])) %>% 
  add_header_above(c(" ", head_vec))
2024
2023
2022
2021
Mænd,2021 Mænd,2022 Mænd,2023 Mænd,2024 Kvinder,2021 Kvinder,2022 Kvinder,2023 Kvinder,2024
Gymnasial uddannelse
Skoler i Grønland 96 86 84 107 198 163 214 166
Skoler i Danmark 7 17 6 7 14 13 26 11
Erhvervsuddannelse
Skoler i Grønland 180 164 166 147 249 198 222 197
Skoler i Danmark 11 8 6 7 8 5 8 10
Suppleringskurser
Skoler i Grønland 37 41 27 30 95 75 67 59
Skoler i Danmark 2 1 2 0 7 2 3 0
Kort videregående uddannelse
Skoler i Grønland 14 17 11 18 34 27 35 29
Skoler i Danmark 5 8 5 7 13 10 10 7
Bacheloruddannelse
Skoler i Grønland 10 8 15 16 22 24 29 22
Skoler i Danmark 5 7 6 3 14 14 5 11
Professionsbacheloruddannelse
Skoler i Grønland 12 17 15 10 86 75 52 65
Skoler i Danmark 6 4 9 6 13 7 12 14
Kandidatuddannelse
Skoler i Grønland 3 2 2 2 10 10 10 9
Skoler i Danmark 10 6 8 7 11 13 15 8



Uddannelsesniveau blandt 35-39-årige


GS Uddannelsesniveau blandt 35-39-årige
# Import
UDXISCPROF_raw <-
  statgl_url("UDXISCPROF", lang = language) %>% 
  statgl_fetch(
    alder_grp     = "35-39",
    ISCED11_level = c(20, 34, 35, 40, 50, 64, 65, 70, 80),
    .col_code     = TRUE
    ) %>% 
  as_tibble()
  
# Transform
UDXISCPROF <-
  UDXISCPROF_raw %>% 
  mutate(
    id = row_number(),
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse") %>% 
    fct_reorder(id, .fun = min, na.rm = T) %>% fct_rev()
    )

# Plot
UDXISCPROF %>% 
  mutate(Aar = Aar %>% make_date()) %>% 
  ggplot(aes(
    x    = Aar, 
    y    = value,
    fill = ISCED11_level
    )) +
  geom_area(position = "fill") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl(base_size = 11) +
  guides(fill = guide_legend(nrow = 3, byrow = TRUE)) +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg4$figs$fig15$title[language],
    subtitle = UDXISCPROF[[2]][1],
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg4$figs$fig15$cap[language]
  )

Statistikbanken

Metode


# Transform
UDXISCPROF <- 
  UDXISCPROF_raw %>% 
  #arrange(desc(time)) %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  mutate(
    Aar           = Aar %>% fct_inorder(),
    ISCED11_level = ISCED11_level %>% fct_inorder()
    ) %>% 
  spread(3, 4)

# Table
UDXISCPROF %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(UDXISCPROF[[1]])) %>% 
  add_footnote(
    sdg4$figs$fig15$foot[language], 
    notation = "symbol"
    )
2020 2021 2022 2023
35-39 år
Grundskole 10. klasses niveau 1.669 1.696 1.781 1.901
Gymnasial uddannelse 154 175 183 197
Erhvervsuddannelse 1.223 1.247 1.229 1.292
Suppleringskurser 118 91 80 80
Kort videregående uddannelse 163 158 159 176
Bacheloruddannelse 48 48 58 56
Professionsbacheloruddannelse 394 417 433 442
Kandidatuddannelse 156 173 179 180
Phd. og forskeruddannelse 7 9 9 11
* Antal personer, højest fuldførte uddannelse.



# Import
UDXISCPROD_raw <-
  statgl_url("UDXISCPROD", lang = language) %>% 
  statgl_fetch(
    alder_grp     = "35-39",
    ISCED11_level = c(20, 34, 35, 40, 50, 64, 65, 70, 80),
    Bsted         = px_all(),
    .col_code     = TRUE
    ) %>% 
  as_tibble()
  
# Transform
UDXISCPROD <-
  UDXISCPROD_raw %>% 
  mutate(
    id                   = row_number(),
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse") %>% 
           fct_reorder(id, .fun = min, na.rm = TRUE) %>% fct_rev(),
    Aar                 = Aar %>% make_date()
    )

# Plot
UDXISCPROD %>% 
  ggplot(aes(
    x    = Aar,
    y    = value,
    fill = ISCED11_level
    )) +
  geom_area(position = "fill") +
  facet_wrap(~ Bsted) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl(base_size = 11) +
  guides(fill = guide_legend(nrow = 3, byrow = TRUE)) +
  scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +
  labs(
    title    = sdg4$figs$fig16$title[language],
    subtitle = UDXISCPROD[[3]][1],
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg4$figs$fig16$cap[language]
  )

Statistikbanken

Metode


UDXISCPROD <-
  UDXISCPROD_raw %>% 
  #arrange(desc(time)) %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  mutate(
    Aar = Aar %>% fct_inorder(),
    ISCED11_level = ISCED11_level %>% fct_inorder()
  ) %>% 
  arrange(ISCED11_level) %>% 
  unite(combi, 2, 4, sep = ",") %>% 
  mutate(combi = combi %>% fct_inorder()) %>% 
  spread(2, ncol(.))

vec      <- colnames(UDXISCPROD[-(1:2)]) %>% str_split(",") %>% unlist()
head_vec <- table(vec[c(F, T)]) %>% rev()
col_vec  <- vec[c(T, F)]

UDXISCPROD %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(col.names = c(" ", col_vec), replace_0s = TRUE) %>% 
  add_header_above(c(" ", head_vec)) %>% 
  add_footnote(
    sdg4$figs$fig16$foot[language], 
    notation = "symbol"
    )
2023
2022
2021
2020
By,2020 By,2021 By,2022 By,2023 Bygd,2020 Bygd,2021 Bygd,2022 Bygd,2023
Grundskole 10. klasses niveau 1.360 1.389 1.506 1.618 309 307 275 283
Gymnasial uddannelse 148 162 171 183 6 13 12 14
Erhvervsuddannelse 1.120 1.140 1.125 1.180 103 107 104 112
Suppleringskurser 112 86 76 77 6 5 4 3
Kort videregående uddannelse 161 157 155 171 2 1 4 5
Bacheloruddannelse 48 48 58 55 0 0 0 1
Professionsbacheloruddannelse 383 403 411 427 11 14 22 15
Kandidatuddannelse 155 173 179 180 1 0 0 0
Phd. og forskeruddannelse 7 9 9 11 0 0 0 0
* Antal personer, højest fuldførte uddannelse.



Informations- og kommunikationsteknologi


FN 4.4.1 Andel af 16-74 årige med uddannelse indenfor informations- og kommunikationsteknologi
# Import
UDXISCPROE_raw1 <-
  statgl_url("UDXISCPROE", lang = language) %>% 
  statgl_fetch(
    ISCED11_level  = c(35, 50, 64, 65, 70),
    ISCED11_sektor = c("06"),
    .col_code      = TRUE
    ) %>% 
  as_tibble()

UDXISCPROE_raw2 <-
  statgl_url("UDXISCPROE", lang = language) %>% 
  statgl_fetch(
    ISCED11_level = "00",
    .col_code     = TRUE
    ) %>% 
  as_tibble()

# Transform
UDXISCPROE <-
  UDXISCPROE_raw1 %>% 
  rename(tæller = value) %>% 
  left_join(UDXISCPROE_raw2 %>% rename(nævner = value) %>% select(-1)) %>% 
  mutate(
    procent       = tæller / nævner * 100,
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse"),
    Aar           = Aar %>% make_date()
    )

# Plot
UDXISCPROE %>% 
  ggplot(aes(
    x    = Aar,
    y    = procent,
    fill = ISCED11_level
  )) +
  geom_col() +
  scale_y_continuous(labels = scales::percent_format(
    scale        = 1, 
    big.mark     = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE, palette  = "spring") +
  guides(fill = guide_legend(nrow = 2, byrow = TRUE)) +
  labs(
    title    = sdg4$figs$fig17$title[language],
    subtitle = sdg4$figs$fig17$sub[language],
    x        = " ",
    y        = " ",
    fill     = NULL,
    caption  = sdg4$figs$fig17$cap[language]
  )

Statistikbanken

# Transform
UDXISCPROE <-
  UDXISCPROE_raw1 %>% 
  rename(tæller = value) %>% 
  left_join(UDXISCPROE_raw2 %>% rename(nævner = value) %>% select(-1)) %>% 
  mutate(
    procent              = tæller / nævner * 100,
    procent              = procent %>% round(1),
    ISCED11_level = ISCED11_level %>% str_remove("uddannelse")
    ) %>% 
  #arrange(desc(time)) %>% 
  filter(Aar >= year(Sys.time()) - 5) %>% 
  mutate(
    ISCED11_level = ISCED11_level %>% fct_inorder(),
    Aar           = Aar %>% fct_inorder()
  ) %>% 
  select(-c(2, 4:5)) %>% 
  spread(2, 3)
  
# Table
UDXISCPROE %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(
    sdg4$figs$fig17$foot[language],
    notation = "symbol")
2020 2021 2022 2023
Erhvervs 0,2 0,2 0,2 0,2
Kort videregående 0,2 0,2 0,2 0,2
Bachelor 0,0 0,0 0,0 0,0
Professionsbachelor 0,0 0,0 0,0 0,0
Kandidat 0,0 0,0 0,0 0,0
* Procentvis andel af unge og voksne med faglige kvalifikationer inden for informations- og kommunikationsteknologi blandt 16-74 årige.