Tilbage


Delmål 17: Partnerskaber for handling

Resultat af offentlige finanser


GS Resultat af offentlige finanser
# Import 
indtagter_raw <-
  statgl_url("OFXREAI", lang = language) %>% 
  statgl_fetch(
    "sector"      = px_all(),
    "transaction" = 43,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

udgifter_raw <-
  statgl_url("OFXREAU", lang = language) %>% 
  statgl_fetch(
    "sector"      = px_all(),
    "transaction" = 44,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

indtagter <- 
  indtagter_raw %>% 
  mutate(transaction = transaction %>% str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()) %>% 
  spread(2, 4)

udgifter <- 
  udgifter_raw %>% 
  mutate(transaction = transaction %>% str_remove_all("[:digit:]|[:punct:]|\\+") %>% trimws()) %>% 
  spread(2, 4)

drift <-
  indtagter %>% 
  left_join(udgifter) %>% 
  gather(transaction, value, -(1:2)) %>% 
  mutate(value = value / 10^6,
         time = time %>% make_date())
  
# Plot
drift %>%
  ggplot(aes(
    x     = time,
    y     = value,
    color = transaction
  )) +
  geom_line(size = 2) +
  facet_wrap(~ sector, scales = "free") +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title = sdg17$figs$fig1$title[language],
    subtitle = " ",
    x = " ",
    y = sdg17$figs$fig1$y_lab[language],
    color = " ",
    caption = sdg17$figs$fig1$cap[language]
  )

Statistikbanken, indtægter

Statistikbanken, udgifter

Metode


# Transform
drift <-
  indtagter %>% 
  left_join(udgifter) %>% 
  gather(transaction, value, -(1:2)) %>% 
  mutate(value = value / 10^6,
         value = round(value, 2)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  spread(3, 4) %>% 
  arrange(desc(time))

# Table
drift %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(drift[[2]]) %>% rev()) %>% 
  add_footnote(sdg17$figs$fig1$foot[language], notation = "symbol")
Drifts og kapitalindtægter i alt Drifts og kapitaludgifter i alt
2023
Den kommunale sektor 6,71 7,18
Den samlede offentlige sektor 14,13 13,84
Den selvstyrede sektor 8,15 7,45
Den statslige sektor 1,52 1,52
2022
Den kommunale sektor 6,53 6,21
Den samlede offentlige sektor 13,57 12,87
Den selvstyrede sektor 7,92 7,60
Den statslige sektor 1,32 1,32
2021
Den kommunale sektor 6,20 6,13
Den samlede offentlige sektor 12,78 12,67
Den selvstyrede sektor 7,33 7,31
Den statslige sektor 1,39 1,39
2020
Den kommunale sektor 6,13 6,04
Den samlede offentlige sektor 12,87 12,61
Den selvstyrede sektor 7,61 7,44
Den statslige sektor 1,36 1,36
* Millarder kroner



# Import 
indtagter_raw <-
  statgl_url("OFXREAI", lang = language) %>% 
  statgl_fetch(
    "sector"      = 0,
    "transaction" = 43,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

udgifter_raw <-
  statgl_url("OFXREAU", lang = language) %>% 
  statgl_fetch(
    "sector"      = 0,
    "transaction" = 44,
    "time"        = px_all(),
    .col_code     = TRUE) %>% 
  as_tibble()

bnp_raw <-
  statgl_url("NRX02", lang = language) %>% 
  statgl_fetch(
    "units"        = "L",
    "account name" = "LBNPTOT",
    "time"         = px_all(),
    .col_code      = TRUE) %>% 
  as_tibble()

# Transform
saldo <- 
  bnp_raw %>% 
  select(3, 4) %>% 
  rename("bnp" = 2) %>% 
  left_join(udgifter_raw  %>% select(3, 4) %>% rename("expenditure" = 2)) %>% 
  left_join(indtagter_raw %>% select(3, 4) %>% rename("revenue" = 2)) %>% 
  mutate(saldo = (revenue - expenditure) / bnp * 10^-3,
         time  = time %>% make_date(),
         type  = "saldo")

# Plot
saldo %>% 
  ggplot(aes(
    x    = time,
    y    = saldo,
    fill = type
  )) +
  geom_col() +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 100, 
    accuracy = 1,
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_fill_statgl() +
  theme(legend.position = "None") +
  labs(
    title = sdg17$figs$fig2$title[language],
    subtitle = sdg17$figs$fig2$sub[language],
    x = " ",
    y = sdg17$figs$fig2$y_lab[language],
    color = " ",
    caption = sdg17$figs$fig2$cap[language]
  )

Statistikbanken, indtægter

Statistikbanken, udgifter

Statistikbanken, BNP

Metode, offentlige finanser


# transform
  saldo <-
  bnp_raw %>% 
  select(3, 4) %>% 
  rename("bnp" = 2) %>% 
  left_join(udgifter_raw  %>% select(3, 4) %>% rename("expenditure" = 2)) %>% 
  left_join(indtagter_raw %>% select(3, 4) %>% rename("revenue" = 2)) %>% 
  filter(time >= year(Sys.time()) - 7) %>% 
  #arrange(desc(time)) %>% 
  mutate(value = (revenue - expenditure) / bnp * 10^-3 * 100,
         value = round(value, 1),
         time  = time %>% factor(levels = unique(time)),
         saldo = sdg17$figs$fig2$saldo[language]) %>% 
  select(-(2:4)) %>% 
  spread(1, 2)



# table
saldo %>%
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(sdg17$figs$fig2$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Faktisk offentlig saldo 6 6,2 1,3 0,5 3,1 1,2
* Procentvis andel af BNP i løbende priser

Forbrugerpriser


GS Forbrugerprisindeks
# Import
PRXPRISV_raw <-
  statgl_url("PRXPRISV", lang = language) %>% 
  statgl_fetch(
      "commodity group" = px_all(),
      "time"            = px_all(),
    .col_code           = TRUE) %>% 
  as_tibble()

# Transform
PRXPRISV <- 
  PRXPRISV_raw %>% 
  mutate(time              = time %>% as.character() %>% readr::parse_date(format = "%Y %b"),
         `commodity group` = `commodity group` %>% factor(levels = unique(`commodity group`)))

# Plot  
cpi <-
  PRXPRISV %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = `commodity group` 
  )) +
  geom_line(linewidth = 1) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = (statgl_url("PRXPRISV", lang = language) %>% statgl_meta())$title,
    subtitle = " ",
    x        = " ",
    y        = sdg17$figs$fig3$y_lab[language],
    color    = sdg17$figs$fig3$color[language],
    caption  = sdg17$figs$fig3$cap[language]
  )
  
plotly::ggplotly(cpi)
Statistikbanken

Metode


# Import
PRXPRISV_raw <-
  statgl_url("PRXPRISV", lang = language) %>% 
  statgl_fetch(
      "commodity group" = px_all(),
      "time"            = px_top(5),
    .col_code           = TRUE) %>% 
  as_tibble()

# Transform
PRXPRISV <-
  PRXPRISV_raw %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time)),
         `commodity group` = `commodity group` %>% factor(levels = unique(`commodity group`))) %>% 
  spread(2, 3)

# Table
PRXPRISV %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  row_spec(1, bold = TRUE)
2023 jan 2023 jul 2024 jan 2024 jul 2025 jan
Samtlige varer og tjenester 127,0 129,0 129,8 132,7 134,4
Fødevarer mv. 147,5 150,1 151,1 154,1 156,5
Brød og kornprodukter 139,5 146,4 146,1 149,2 153,9
Kød, kødvarer 149,6 150,9 152,1 152,1 153,9
Fisk 126,6 127,3 127,2 127,2 127,4
Mælk, fløde, ost, æg 140,4 142,2 142,0 143,3 151,9
Smør, margarine m.v. 205,6 205,7 211,8 215,4 231,1
Frugt 135,9 135,9 145,8 145,2 147,8
Grønsager 151,6 153,0 150,5 154,5 160,6
Sukker og slik mv. 176,3 178,6 180,5 182,0 181,9
Andre fødevarer 139,7 144,5 143,4 157,0 159,8
Kaffe, te m.v. 143,5 145,0 145,6 150,9 153,1
Sodavand og juice 161,2 165,7 168,1 177,4 178,3
Alkohol og tobak 133,0 134,2 135,5 138,5 141,0
Alkohol 130,6 132,1 133,5 139,0 139,8
Tobak 134,9 135,9 137,0 137,9 141,7
Beklædning og fodtøj 90,6 91,3 92,2 95,4 98,8
Bolig 127,7 129,4 130,1 134,8 138,2
Boligudstyr, husholdningstj 122,7 123,1 117,8 116,3 114,2
Medicin, pharm. artikler 131,5 132,8 132,5 130,3 132,3
Transport 128,5 129,1 132,6 134,3 133,4
Telefon, porto 85,5 85,5 85,6 85,6 85,6
Fritid og kultur 114,2 120,3 119,6 125,0 122,6
Restauranter og hoteller 137,9 141,1 142,4 143,8 145,1
Andre varer og tjenester 119,5 121,3 123,3 123,3 126,9
# Import
PRXPRISH_raw <-
  statgl_url("PRXPRISH", lang = "da") %>%
  statgl_fetch(
      "time"  = px_all(),
      "type"  = 0,
    .col_code = TRUE) %>% 
  as_tibble()



time <- statgl_url("PRXPRISH", lang = "en") %>%
  statgl_fetch(
      "time"  = px_all()) %>% 
  select(time_eng = time)

fig_title <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title %>% str_split(", "))[2]
fig_sub   <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title %>% str_split(", "))[1]

# Transform
PRXPRISH <-
  PRXPRISH_raw %>% 
  cbind(time) %>% 
  mutate(time = time_eng %>% parse_date(format = "%Y %B")) %>% 
  select(-time_eng)


fig_title <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title %>% str_split(", "))[2]
fig_sub   <- unlist(statgl_meta(statgl_url("PRXPRISH", lang = language))$title %>% str_split(", "))[1]

# Plot
PRXPRISH %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    color = type
  )) +
  geom_line(size = 2) +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 1, 
    accuracy = 1, 
    big.mark = ".",
    decimal.mark = ","
    )) +
  theme_statgl() + 
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = fig_title,
    subtitle = fig_sub,
    x        = " ",
    y        = " ",
    caption  = sdg17$figs$fig4$cap[language]
  ) 

Statistikbanken

Metode


# Import
PRXPRISH_raw <-
  statgl_url("PRXPRISH", lang = language) %>%
  statgl_fetch(
      "time"  = px_top(5),
      "type"  = 0,
    .col_code = TRUE) %>% 
  as_tibble()

# Transform
PRXPRISH <-
  PRXPRISH_raw %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(1, ncol(.))

PRXPRISH %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  add_footnote(fig_title, notation = "symbol")
2023 januar 2023 juli 2024 januar 2024 juli 2025 januar
Ændring i procent pr. løbende 12 måneder 2,7 2,5 2,2 2,8 3,6
* Forbrugerpristal

Forsyningsbalancen


GS Forsyningsbalance
# Import
NRX11_raw <-
  statgl_url("NRX11", lang = language) %>% 
  statgl_fetch(
      "units"   = "K",
      "account" = px_all(),
      "time"    = px_all(),
    .col_code   = TRUE) %>% 
  as_tibble()

var <- unique(NRX11_raw[[2]])
vec <- c(var[1], var[4], var[5], var[6], var[7], var[2])

# Transform
NRX11 <-
  NRX11_raw %>% 
  filter(account %in% vec) %>% 
  mutate(account = account %>% factor(levels = unique(vec)),
         time    = time    %>% make_date()) %>% 
  arrange(account, time) %>% 
  group_by(account) %>% 
  mutate(pct = (value - lag(value)) / lag(value)) %>% 
  ungroup()

# Plot
NRX11 %>% 
  ggplot(aes(
    x     = time,
    y     = pct,
    color = account
  )) +
  geom_line(size = 2) +
  geom_hline(yintercept = 0, linetype = "dashed") + 
  facet_wrap(~ account, scales = "free") +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 100, 
    accuracy     = 1, 
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_color_statgl() +
  labs(
    title    = sdg17$figs$fig5$title[language],
    subtitle = NRX11[[1]][1],
    x        = " ",
    y        = sdg17$figs$fig5$y_lab[language],
    color    = " ",
    caption  = sdg17$figs$fig5$cap[language]
  )

Statistikbanken


# Transform
NRX11 <-
  NRX11_raw %>% 
  filter(account %in% vec) %>% 
  mutate(account = account %>% factor(levels = unique(vec))) %>% 
  arrange(account, time) %>% 
  group_by(account) %>% 
  mutate(pct = (value - lag(value)) / lag(value) * 100,
         pct = round(pct, 1)) %>% 
  ungroup() %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 5) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  select(-4) %>% 
  spread(3, 4)

# Table
NRX11 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(sdg17$figs$fig5$index[language], 1, length(NRX11[[2]])) %>% 
  add_footnote(NRX11[[1]][1], notation = "symbol")
2020 2021 2022 2023
Årlig procentvis ændring
Bruttonationalprodukt 0,3 1,6 2,0 0,9
Privat forbrug -0,3 3,2 0,6 0,1
Offentlig forbrug -2,9 2,3 -1,7 2,2
Bruttoinvestering 7,0 13,7 1,8 -3,6
Eksport af varer og tjenester -4,0 -6,0 13,9 3,0
Import af varer og tjenester -2,1 6,0 5,7 -0,1
* 2010-priser, kædede værdier

Offentligt forbrug og bloktilskud mv.


GS Offentligt forbrug og bloktilskud mv.
# Import 
NRD11_raw <- 
  statgl_url("NRX11", lang = language) %>% 
  statgl_fetch(
    units   = "L",
    account = c("0000", "3200"),
    time    = px_all(),
    .col_code   = TRUE
  ) %>% 
  as_tibble()

OFXREAI_raw <- 
  statgl_url("OFXREAI", lang = language) %>% 
  statgl_fetch(
    sector      = c(0),
    transaction = c(27),
    time        = px_all(),
    .col_code   = TRUE
  ) %>% 
  as_tibble()

# Transform
bnp <- 
  NRD11_raw %>% 
  mutate(account = account %>% factor(levels = unique(account))) %>% 
  spread(account, value) %>% 
  left_join(OFXREAI_raw %>%
              mutate(
                transaction = transaction %>% 
                  trimws() %>% 
                  str_remove_all("[:digit:]") %>% 
                  str_remove("...") %>%
                  trimws(),
                value = value / 1000
                ) %>% 
              spread(transaction, value) %>% 
              select(-1)
            )
  
labels     <- bnp %>% colnames()
vec        <- 1:length(labels)
names(vec) <- labels

bnp_relativ <-
  bnp %>% 
  rename(
    Y = 3,
    O = 4,
    B = 5
  ) %>% 
  mutate(
    O = O / Y * 100,
    B = B / Y * 100
  ) %>% rename(vec) %>% 
  select(-3) %>% 
  gather(key, value, -units, -time) %>% 
  mutate(time = time %>% as.numeric(),
         key  = key %>% factor(levels = unique(key)))


sub_lab <- 
  bnp_relativ %>% 
  select(1) %>% 
  separate(units, c("units", "drop"), ",") %>% 
  pull(units) %>% 
  unique()


# Plot
bnp_relativ %>% 
  ggplot(aes(
    x     = time,
    y     = value,
    fill  = key
  )) +
  geom_col(size = 2) +
  facet_wrap(~ key, scales = "free", ncol = 1) +
  theme_statgl() + 
  theme(legend.position = "none") +
  scale_y_continuous(labels  = scales::percent_format(
    scale = 1
  )) +
  scale_fill_statgl() +
  labs(
    title    = sdg17$figs$fig6$title[language],
    subtitle = sub_lab,
    y        = " ",
    x        = " ",
    caption  = sdg17$figs$fig6$cap[language]
  )

Statistikbanken


# Table
tab <- 
  bnp_relativ %>% 
  #arrange(desc(time)) %>% 
  filter(time >= year(Sys.time()) - 7) %>% 
  mutate(
    time = time %>% factor(levels = unique(time)),
    value = value %>% round(1)
    ) %>% 
  spread(time, value)

foot_lab <- 
  tab %>% 
  select(1) %>% 
  separate(units, c("units", "drop"), ",") %>% 
  pull(units) %>%
  table()

tab %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = foot_lab) %>% 
  add_footnote(sdg17$figs$fig6$foot[language], notation = "symbol")
2018 2019 2020 2021 2022 2023
Løbende priser
Offentlig forbrug 43,1 43,8 43,6 44,3 41,3 41,7
Bloktilskud m.v. 19,9 19,3 19,4 19,0 17,9 18,1
* Procent i forhold til bruttonationalprodukt

Højhastighedsinternet


GS Højhastighedsinternet
# Import 
time  <- seq(2018, 2020)
value <- c(80, 92.6, 92.6) 
type  <- "internet"

title   <- sdg17$figs$fig7$title[language]
caption <- sdg17$figs$fig7$cap[language]
unit    <- sdg17$figs$fig7$unit[language]


# Plot
data.frame(time, value, type) %>% 
  as_tibble() %>% 
  ggplot(aes(
    x = time, 
    y = value,
    fill = type
    )) + 
  geom_col() +
  expand_limits(y = 100) +
  scale_y_continuous(labels  = scales::percent_format(
    scale        = 1,
    accuracy     = 1,
    big.mark     = ".",
    decimal.mark = ","
  )) +
  scale_fill_statgl() +
  theme_statgl() + 
  theme(legend.position = "none") +
  labs(
    title    = title,
    subtitle = unit,
    x        = " ",
    y        = " ",
    caption  = caption
  )




# Table 
value <- c("80%", "92.6%", "92.6%") 

data.frame(time, value) %>% 
  as_tibble() %>% 
  mutate(col = title) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table()
2018 2019 2020
Adgang til højhastighedsinternet 80% 92.6% 92.6%