Tilbage


Delmål 13: Klimaindsats

Emissionsopgørelse fra DCE


GS Emission af drivhusgasser efter sektor
# Import
ENX1EM1_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/53af71be-9a37-48a3-983c-e98720f29d40.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))

# Transform
ENX1EM1 <- 
  ENX1EM1_raw %>% 
  rename(
    "gas"    = 1,
    "sector" = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    time   = time %>% make_date(),
    value  = value / 1000
  )

# Plot
ENX1EM1 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = gas
  )) +
  geom_col() +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title    = sdg13$figs$fig1$title[language],
    subtitle =  ENX1EM1[[2]][1],
    x        = " ",
    y        = sdg13$figs$fig1$y_lab[language],
    fill     = sdg13$figs$fig1$fill[language],
    caption  = sdg13$figs$fig1$cap[language]
  )

Statistikbanken

Metode

Rapport


# Transform
ENX1EM1 <- 
  ENX1EM1_raw %>% 
  rename(
    "gas"    = 1,
    "sector" = 2,
    "time"   = 3,
    "value"  = 4
  ) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    value  = value / 1000,
    value  = round(value, 3)
  ) %>% 
  filter(time >= year(Sys.time()) - 8) %>% 
  spread(1, ncol(.)) %>% 
  arrange(desc(time))

# Table
ENX1EM1 %>% 
  select(-1) %>% 
  rename(" " = 1) %>% 
  statgl_table(year_col = " ") %>% 
  pack_rows(index = table(ENX1EM1[[1]])) %>% 
  add_footnote(sdg13$figs$fig1$foot[language], notation = "symbol")
SF6 HFC Lattergas N2O Metan CH4 Kuldioxid CO2
Samlet nettoemission
2023 0,003 11,49 13,41 15,9 611
2022 0,003 12,20 12,30 16,1 589
2021 0,003 13,02 10,19 16,2 548
2020 0,003 12,94 10,02 16,1 552
2019 0,003 11,14 9,53 16,0 528
2018 0,003 9,76 8,71 16,1 526
2017 0,003 10,09 8,52 15,9 538
* Tusind ton C02-ækvivalenter



# Import
ENX1EM1_raw <-
  read_csv(
    paste0("https://bank.stat.gl:443/sq/ca6d79eb-6230-4f07-ba49-c486f6e1edd4.csv", "?lang=", language),
    locale = locale(encoding = "latin1"))


# Transform
ENX1EM1 <-
  ENX1EM1_raw %>% 
  rename(
    "time"   = 1,
    "gas"    = 2,
    "sector" = 3,
    "value"  = 4
  ) %>% 
  filter(sector != unique(ENX1EM1_raw[[3]])[5]) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    sector = sector %>% str_remove_all("[1-5]|\\.") %>% trimws(),
    sector = sector %>% fct_inorder(),
    value  = value / 1000
  )


ENX1EM1 %>% 
  ggplot(aes(
    x    = time,
    y    = value,
    fill = gas
  )) +
  geom_area() +
  facet_wrap(~ sector, scales = "free") +
   scale_y_continuous(labels = scales::unit_format(
    suffix       = " ",
    big.mark     = ".",
    decimal.mark = ","
  )) +
  theme_statgl() + 
  scale_fill_statgl(reverse = TRUE) +
  labs(
    title   = sdg13$figs$fig2$title[language],
    x       = " ",
    y       = sdg13$figs$fig2$y_lab[language],
    fill    = str_to_title(colnames(ENX1EM1_raw)[2]),
    caption = sdg13$figs$fig2$cap[language]
  )

Statistikbanken

Metode

Rapport


# Transform
ENX1EM1 <-
  ENX1EM1_raw %>% 
  rename(
    "time"   = 1,
    "gas"    = 2,
    "sector" = 3,
    "value"  = 4
  ) %>% 
  filter(
    sector != unique(ENX1EM1_raw[[3]])[5],
    time >= year(Sys.time())- 8,
    value != 0) %>% 
  mutate(
    gas    = gas %>% fct_inorder() %>% fct_rev(),
    sector = sector %>% str_remove_all("[1-5]|\\.") %>% trimws(),
    sector = sector %>% fct_inorder(),
    value  = value / 1000
  ) %>% 
  #arrange(desc(time)) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(1, ncol(.)) %>% 
  arrange(sector)

# Table
ENX1EM1 %>% 
  select(-2) %>% 
  rename(" " = 1) %>% 
  statgl_table() %>% 
  pack_rows(index = table(ENX1EM1[[2]])) %>% 
  add_footnote(sdg13$figs$fig2$foot[language],
               notation = "symbol")
2017 2018 2019 2020 2021 2022 2023
Emission fra energiforbrug
Lattergas N2O 2,096 2,039 2,045 2,092 2,093 2,291 2,331
Metan CH4 1,369 1,387 1,378 1,442 1,430 1,501 1,515
Kuldioxid CO2 532,476 520,309 522,563 545,965 542,840 583,722 605,406
Industrielle processer
SF6 0,003 0,003 0,003 0,003 0,003 0,003 0,003
HFC 10,094 9,761 11,144 12,944 13,023 12,204 11,487
Lattergas N2O 0,001 0,001 0,001 0,001 0,001 0,001 0,001
Metan CH4 0,001 0,001 0,001 0,001 0,001 0,001 0,001
Kuldioxid CO2 0,721 0,949 1,014 0,854 0,715 0,718 0,745
Emission fra landbrug
Lattergas N2O 1,628 1,433 2,093 2,207 2,375 4,250 5,035
Metan CH4 7,086 7,234 7,086 7,197 7,225 7,052 6,907
Kuldioxid CO2 0,004 0,004 0,004 0,004 0,004 0,004 0,004
Emission fra affaldshåndtering
Lattergas N2O 4,750 5,185 5,337 5,672 5,667 5,712 5,999
Metan CH4 7,477 7,478 7,483 7,488 7,498 7,506 7,509
Kuldioxid CO2 3,385 3,409 3,427 3,450 3,474 3,493 3,511
* Tusind ton CO2-ækvivalenter

Nøgletal for emission af drivhusgasser fra energiforbrug


GS Nøgletal for emission af drivhusgasser fra energiforbrug
ENX6KEY_raw <- 
  statgl_url("ENX6KEY", lang = "da") |> 
  statgl_fetch(
    "key figure" = 16:18,
    time = px_all(),
    .col_code = T
  ) |> 
  as_tibble()

# Transform
ENX6KEY <- 
  ENX6KEY_raw |> 
  rename(key = `key figure`) |> 
  mutate(time = as.numeric(time))



# Plot
ENX6KEY |> 
  ggplot(aes(
    x = time,
    y = value,
    color = key
  )) +
  geom_line(size = 2) +
  facet_wrap(~ key, nrow = 3, scales = "free_y") +
  theme_statgl() +
  scale_color_statgl() +
  theme(legend.position = "none") +
  labs(
    title    = sdg13$figs$fig5$title[language],
    subtitle = sdg13$figs$fig5$sub[language],
    y        = " ",
    x        = " ",
    caption  = sdg13$figs$fig5$cap[language]
  )

Statistikbanken

#Table
ENX6KEY %>% 
  filter(time >= year(Sys.time()) - 8) %>% 
  mutate(time = time %>% factor(levels = unique(time))) %>% 
  spread(time, value) %>% 
  rename(" " = 1) %>% 
  statgl_table(replace_0s = TRUE)
2017 2018 2019 2020 2021 2022 2023
Faktisk emission i alt [1.000 ton CO2e] 535,7 523,4 525,7 549,4 546,2 587,4 609,1
Faktisk emission i alt pr. indbygger [ton CO2e] 9,5 9,3 9,4 9,7 9,6 10,4 10,7
Faktisk emission pr. BNP-enhed [ton CO2e pr. mio. BNP] 36,3 35,1 34,4 35,6 35,2 NA NA